Решим задачу на движение по воде
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
ответ: 91,7 километров.
Формула работы А = P t
Пусть первый рабочий,работая самостоятельно, может выполнить
эту работу за х дней, а второй - за y дней. Тогда производительность первого рабочего Р1 = 1/х, а производительность второго рабочего Р2 = 1/ y,
а их общая производительность при совместной работе равна Р = Р1 + Р2
А (1) P(1/дн.) t (дн.)
I + II 1 1/4 4
I 1/3 1/х 1/3:1/х = х/3
II 2 /3 1/y 2 /3:1/y= 2y/3
Тогда 1/х + 1/y = 1/4
х/3 + 2y/3 = 10
х/3 + 2y/3 = 10
х + 2y = 10
3
х + 2y = 30
х = 30 - 2y
1/х + 1/y = 1/4
1/30 - 2y + 1/y = 1/4
y + 30 - 2y = 1/4
y(30 - 2y)
30 - y = 1
y(30 - 2y) 4
y(30 - 2y) = 4(30 - y)
30y - 2y² = 120 - 4y
- 2y² + 34y - 120 = 0
y² - 17y + 60 = 0
D = 289 - 4*60 = 289 - 240 = 49
y1 = 17 + 7 = 12 => х1 = 30 - 2y = 30 - 2*12 = 6
2
y2 = 17 - 7 = 5 => х2 = 30 - 2y = 30 - 2*5 = 20
2
ответ: первый рабочий,работая самостоятельно, может выполнить
эту работу за 12 дней, тогда второй - за 6 дней, или,
первый рабочий, может выполнить эту работу за 5 дней,
тогда второй - за 20 дней.