Первое уравнение - график окружности с центром в точке (0;0), то есть в начале координат, радиусом 3.
Второе уравнение y=x^2+p, график параболы, ветви которой направлены вверх, и которая двигается по оси Oy вверх или вниз(но не влево и вправо) в зависимости от значения p. Парабола будет иметь с графиком окружности 3 точки пересечения (а значит и система будет иметь три решения), когда вершина параболы будет лежать на окружности, а две ветви параболы будут пересекать окружность в 2 точках. Вершина параболы должно лежать в точке (0; -3) чтобы это выполнялось, а значит p=-3
P.S. если что-то не понятно, напишите.
Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f(x) > 0. Алгоритм состоит из 5 шагов:
Решить уравнение f(x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
Найти кратность корней. Если корни четной кратности, то над корнем рисуем петлю. (Корень считается кратным, если существует четное количество одинаковых решений)
Выяснить знак (плюс или минус) функции f(x) на самом правом интервале. Для этого достаточно подставить в f(x) любое число, которое будет правее всех отмеченных корней;
Отметить знаки на остальных интервалах, чередуя их.
После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f(x) > 0, или знаком «−», если неравенство имеет вид f(x) < 0.
В случае с нестрогими неравенствами( ≤ , ≥) необходимо включить в интервалы точки, которые являются решением уравнения f(x) =
Объяснение:
15кг=40%меди
Хкг=30%меди Выразим отсюда х :
Х=15*30/40
х=11.25кг - олова надо добавить, чтобы получился 30% сплав меди