Чтобы число делилось на 3, 4, 5 одновременно. число, оканчивающееся на 5, не может быть кратно 4, поэтому "5" вычеркиваем. 0 не вычеркиваем, так как числа, оканчивающиеся на 0 (как и на 5), кратны 5. число делится на 4, если последние две цифры этого числа образуют число, кратное 4. 20 кратно 4. но если мы ее вычеркнем, то нам придется вычеркнуть и 7, и 5, и 9(50, 70, 90не кратны 4), но уже получается что мы вычеркнули больше трех цифр, что недопустимо. поэтому последние цифры искомого числа 2 и 0. осталось нам воспользоваться признаком делимости на 3(сумма цифр кратного трём числа кратна 3). 8+6+9+5+7+2+0=37⇒ближайшие кратные 3 числа (<37) это 36, 33, 30, 27, 24, 21. 36 мы не можем получить, вычеркнув любые 2 цифры из 8, 7, 9, 5, 7. также не можем получить 33, 30, 27. а вот сумму 24 можем получить, вычеркнув 8 и 5. итак, искомое число 69720.
Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.
это это или как
.
я просто не поняла