М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anyalike
anyalike
04.01.2021 11:04 •  Алгебра

Разложите на множители: (x^2+7xy+3y^2)-(x^2+3y^2)^2 (Не Надо искать другие ответы они не правильные)​

👇
Ответ:
RinaZum
RinaZum
04.01.2021

x^2+7xy+3y^2-x^4-6x^2y^2-9y^4

Объяснение:

4,4(88 оценок)
Открыть все ответы
Ответ:
gulzazak
gulzazak
04.01.2021

Если я правильно понял задание то:

Составим векторы c1 и c2 для этого вместо а и b подставим значения координат векторов приведенных в задании и руководствуясь правилами умножения и сложения векторов получим

 

c1=2*\left[\begin{array}{c}-9\\5\\3\end{array}\right]-\left[\begin{array}{c}7\\1\\-2\end{array}\right] c2 = 3* \left[\begin{array}{c}-9\\5\\3\end{array}\right]+5*\left[\begin{array}{c}7\\1\\-2\end{array}\right] 

 

Получаем Необходимым и достаточным условие коллинеарности двух векторов является равенство нулю их векторного произведения

векторное произведение [a,b] для произвольных векторов а=(а1,а2,а3) и b=(b1,b2,b3) вычисляется по формуле

[a,b]={a2*b3-a3*b2; a3*b1-a1*b3; a1*b2-b1*a2} 

Вычисляя по этой формуле векторное произведение c1 и с2 получаем:

[c1,c2]={-169; 39; -572} он не равен нулевому вектору, значит вектора не коллинеарны Векторы будут коллинеарны тогда и только тогда, когда существует такая константа m, что с1=m*c2

чтобы выяснить ее существование рассмотрим соотношение соответсвующих координат векторов c1 и с2

\frac{c1_x}{c2_x}=\frac{-25}{8}  

\frac{c1_y}{c2_y}=\frac{9}{20}  

\frac{c1_z}{c2_z}=\frac{8}{-1}  

Получаем что:

\frac{-25}{8}\neq \frac{9}{20}\neq \frac{8}{-1} 

Значит такой константы m не существуют, векторы не коллинеарны 

4,7(92 оценок)
Ответ:
silinskay
silinskay
04.01.2021
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}},

где \underbrace{99...9}=k, a \underbrace{00...0}=m

Рассмотрим пример:

Дана бесконечная периодическая дробь 2,(25)

Итак, по формуле:

y - целая часть. У нас она равна 2

k- - количество цифр в периоде. У нас их 2

m- количество цифр до периода. У нас их 0

a-  все цифры, включая период, в виде натурального числа. У нас это 25

b- все цифры без периода в виде натурального числа. Их нет.

Итак, получаем:

y=2\\
k=2\\
m=0\\
a=25\\
b=0

Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=2+ \frac{25-0}{99}=2 \frac{2\cdot99+25}{99}= \frac{223}{99}

Необходимо отметить, что  под k подставляется количество 9, а под m -количество нулей. У нас k=2, значит пишем две цифры 9, а m=0, значит, нулей не пишем вообще. Между  k\ u\ m не стоит знак умножения

*****************************************

0,41(6)

y=0\\
k=1\\
m=2\\
a=416\\
b=41

Подставляем:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=0+ \frac{416-41}{900}= \frac{375}{900}= \frac{375:75}{900:75} = \frac{5}{12}

***************************************

3,6(020)

y=3\\
k=3\\
m=1\\
a=6020\\
b=6


Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=3+ \frac{6020-6}{9990}= 3\frac{6014}{9990} = \frac{35984(:2)}{9990(:2)}= \frac{17992}{4995}
4,7(49 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ