Основание логарифма = 4. И 4>1. Данная функция монотонно возрастает, т.е. наименьшему значению аргумента соответствует наименьшее значение функции, и наоборот. На месте аргумента (Х) у нас квадратичная функция y=x^2+6x+25 , графиком которой является парабола с ветвями вверх. Такая парабола свое наименьшее значение принимает в У вершине. Найдем координаты вершины параболы: X в. = -b/2a= -6/2=-3 Y в.= (-3)^2+6*(-3)+25=16. Найдем значение логарифма: log4(16)=2 Осталось найти наименьшее значение заданной функции: 2-5=-3 ответ: У наим. = -3
Решение Пусть х изделий бригада должна была изготовить в 1 день по плану (120/х) дней - бригада должна была работать (х+2) - изделия бригада изготовляла фактически в 1 день 120/(х+2) дней - бригада работала фактически. А так как, по условию задачи, бригада закончила работу на 3 дня раньше срока, то составим уравнение: 120/х - 120/(х+2)=3 120(х+2) - 120х = 3х(х+2) 120x + 240 – 120x – 3x² – 6x = 0 3x² + 6x - 240 = 0 делим на 3 x² + 2x – 80 = 0 D = 4 + 4*1*80 = 324 x₁ = (- 2 – 18)/2 = - 10 < 0 не удовлетворяет условию задачи x₂ = (- 2 + 18)/2 = 8 8 - изделий бригада рабочих изготовляла в 1 день по плану ответ: 8 изделий
1) (x - 5)(5 + x) = (x - 5)(x + 5) = x² - 5² = x² - 25;
2) (8 + y)(y - 8) = (y - 8)(y + 8) = y² - 8² = y² - 64;
3) (10 - k)(k + 10) = (10 - k)(10 + k) = 10² - k² = 100 - k²;
4) (a + 2/3 · b)(a - 2/3 · b) = a² - (2/3 · b)² = a² - 4/9 · b²;
5) (4/9 · x - y)(y + 4/9 · x) = (4/9 · x)² - y² = 16/81 · x² - y²;
6) (4/15 · n - m)(m + 4/15 · n) = (4/15 · n)² - m² = 16/225 · n² - m²;
7) (9x - 5y)(9x + 5y) = (9x)² - (5y)² = 81x² - 25y²;
8) (-4a + 3b)(3b + 4a) = (3b - 4a)(3b + 4a) = (3b)² - (4a)² = 9b² - 16a²;
9) (13k - 2d)(2d + 13k) = (13k)² - (2d)² = 169k² - 4d²;
10) (5/4 · c + 3/7 · d)(3/7 · d - 5/4 · c) = (3/7 · d - 5/4 · c)(3/7 · d + 5/4 · c) =
= (3/7 · d)² - (5/4 · c)² = 9/49 · d² - 25/16 · c² = 9/49 · d² - 1 целая 9/16 · с²;
11) (1/3 · х - 3у)(3у + 1/3 · х) = (1/3 · х)² - (3у)² = 1/9 · х² - 9у²;
12) (1/5 · a + 1/9 · b)(1/9 · b - 1/5 · a) = (1/9 · b)² - (1/5 · a)² = 1/81 · b² - 1/25 · a².
Объяснение: