Надо смотреть на общее число игрушек 10 и на общую сумму 53 можно составлять систему цравнений x+y+z=10 3x+5у+7z=53 и решать до бесконечности а попробуем обратить внимание на второе уравнение оно состоит из Нечетной суммы и суммы трех множителей, которые если x, y, z - нечетные, то произведение нечетное и если x, x, z - четные то произведение четное, и смотреть какая сумма получается четная или нечетная . Обратим внимание, что сумма вседа Четная, а 53 это нечетное число Рассмотрим как 10 раскладывается на игрушки к примеру 1-1-8 здесь сумма четная (два множителя нечетных и один четный), 1-2-7 - опять тоже самое. Вы никогда не разложите 10 или на 3 нечетных числа или чтобы было одно нечетное число - во всех остальных случаях 3x+5e+7z ВСЕДА ЧЕТНОЕ
Только это задача ближе к олимпиадной - чем просто из 8-го класса
(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
можно составлять систему цравнений
x+y+z=10
3x+5у+7z=53
и решать до бесконечности а попробуем обратить внимание на второе уравнение оно состоит из Нечетной суммы и суммы трех множителей, которые если x, y, z - нечетные, то произведение нечетное и если x, x, z - четные то произведение четное, и смотреть какая сумма получается четная или нечетная .
Обратим внимание, что сумма вседа Четная, а 53 это нечетное число
Рассмотрим как 10 раскладывается на игрушки к примеру 1-1-8 здесь сумма четная (два множителя нечетных и один четный), 1-2-7 - опять тоже самое. Вы никогда не разложите 10 или на 3 нечетных числа или чтобы было одно нечетное число - во всех остальных случаях 3x+5e+7z ВСЕДА ЧЕТНОЕ
Только это задача ближе к олимпиадной - чем просто из 8-го класса