1.Коля шел домой вверх по течению ручья со скоростью в 1,5 раза большей, чем скорость течения, и держал в руках шляпу и палку. На ходу он бросил в ручей шляпу, перепутав ее с палкой. Вскоре, заметив ошибку, он бросил палку в ручей и побежал назад со скоростью вдвое большей той, с какой шел вперед. Догнав плывущую шляпу, он мгновенно достал ее из воды, повернулся и как ни в чем ни бывало пошел домой с прежней скоростью. Через 40 сек. после того, как он догнал шляпу, он встретил палку, плывущую ему навстречу. Насколько раньше пришел бы он домой, если бы все время шел вперед?
2.Двое рабочих, работая вместе, могут окончить некоторую работу в 12 дней. После 8 дней совместной работы один из них заболел, и другой окончил работу один, проработав еще 5 дней. Во сколько дней каждый из них, работая отдельно, может выполнить эту работу?
Найдем значения Х, которые обращают подмодульные выражения в ноль: 1)x^2-2x-15=0 ОДЗ:6x-27>0;x>4,5 x1=-3; x2=5 2)x^2-8x+12=0 x1=-2; x2=6 Отметим эти точки на числовой прямой:
-3-256
Точки разбивают числовую ось на 5 промежутков. Рассмотрим каждый: 1)x<-3 Первое подмодульное выражение отрицательно на этом промежутке, и его мы раскроем со сменой знака. Второе - положительно. Его раскроем без смены знака: -x^2+2x+15+x^2-8x+12=6x-27 x=4,5 - число не принадлежит данному промежутку 2)-3<=x<-2 Подмодульные выражения мы раскроем также как и в первом случае и получим х=4,5. Этот корень также не принадлежит промежутку. 3)-2<=X<5 Оба подмодульных выражения отрицательны: -x^2+2x+15-x^2+8x-12=6x-27 x1=-3; x2=5 - оба корня не принадлежат рассматриваемому числовому промежутку 4)5<=x<6 x^2-2x-15-x^2+8x-12=6x-27 6x-27=6x-27 Это значит, что все числа этого промежутка являются корнями уравнения. 5)x>=6 x^2-2x-15+x^2-8x+12=6x-27 x1=2; x2=6 Только х=6 принадлежит промежутку. Итак, у нас получилось два целых корня: 5 и 6. Их произведение =30.
Найдем значения Х, которые обнуляют подмодульные выражения: 4x-10=0; x=2,5 2x-14=0; x=7 Нанесем эти точки на числовую ось:
2,57
Эти точки разбивают числовую прямую на три промежутка.Рассмотрим все три случая: 1)x<2,5 На этом промежутке оба подмодульных выражения отрицательны, поэтому модули раскроем со сменой знака: [-4x+10+2x-14]/ (x+3)(x-6) <=0 (-2x-4)/(x+3)(x-6) <=0 -2(x+2) / (x+3)(x-6) <=0 (x+2)/(x+3)(x-6) >=0
-__(-3)__+[-2]___-(6)+
С учетом промежутка получаем: x e (-3; 2]
2)2,5<=x<7 Первый модуль раскроем без смены знака, а второй - со сменой знака: [4x-10+2x-14]/(x+3)(x-6) <=0 (6x-24)/(x+3)(x-6)<=0 6(x-4)/(x+3)(x-6)<=0 (x-4)/(x+3)(x-6)<=0
1.Коля шел домой вверх по течению ручья со скоростью в 1,5 раза большей, чем скорость течения, и держал в руках шляпу и палку. На ходу он бросил в ручей шляпу, перепутав ее с палкой. Вскоре, заметив ошибку, он бросил палку в ручей и побежал назад со скоростью вдвое большей той, с какой шел вперед. Догнав плывущую шляпу, он мгновенно достал ее из воды, повернулся и как ни в чем ни бывало пошел домой с прежней скоростью. Через 40 сек. после того, как он догнал шляпу, он встретил палку, плывущую ему навстречу. Насколько раньше пришел бы он домой, если бы все время шел вперед?
2.Двое рабочих, работая вместе, могут окончить некоторую работу в 12 дней. После 8 дней совместной работы один из них заболел, и другой окончил работу один, проработав еще 5 дней. Во сколько дней каждый из них, работая отдельно, может выполнить эту работу?