Объяснение: 1) ∫₄⁹√xdx =(2/3)·x√x |₄⁹= (2/3)· (9√9 = 4√4)=(2/3)·(27-8)= 2·19/3=38/3
2) 1+ log₂(x+5) = log₂(3x-1) +log₂(x-1) , ОДЗ: х-1>0, x>1 ⇔ log₂2 +log₂(x+5) = log₂(3x-1) +log₂(x-1) ⇔ log₂ (2x+10) = log₂ (3x²-4x+1) ⇒ 2x+10= 3x²-4x+1 ⇒ 3x²-6x-9 =0⇒ x²-2x - 3=0, D= 4+12=16>0, ⇒x₁=(2+4)/2=3, x₂=(2-4)/2=-1 (не удовлетворяет ОДЗ уравнения). ответ: х=3 №3 tgα=y'(x₀), y'(x)=(x³)'=3x² ⇒ т.к. х₀ =0, то tgα=y'(x₀)=3·0²=0
х∈(3, 4).
Объяснение:
Решить систему неравенств:
х>3
4-х>0
Первое неравенство:
х>3
Решения неравенства находятся в интервале от х=3 до + бесконечности.
х∈(3, +∞), это решение первого неравенства.
Неравенство строгое, скобки круглые.
Второе неравенство:
4-х>0
-x>-4
x<4 знак меняется
Решения неравенства находятся в интервале при х от - бесконечности до 4.
х∈(-∞, 4), это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить оба интервала, чтобы найти пересечение, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем точки 3 и 4. Штриховка от точки 3 вправо до + бесконечности, от 4 влево до - бесконечности.
Пересечение х∈(3, 4), это и есть решение системы неравенств.
pi - чило ПИ~3.14, но не суть
на ед. окружности
sinX>0 (0;pi)
sinX<0 (pi;2pi)
2-это 2 радиана, как я понял.
2<pi => X=2 sinX>0
4>pi => X=4 sinX<0
надеюсь я адекватно рассказал
нарисуюй окружность с радиусом = 1, сразу поймешь
X=2 будет во второй четверти, там sinX>0
X=4 - третья четверть, => sinX<0