х = -1,6
у = 5,5
Объяснение:
1) Построй график функции y=3−2,5x
Уравнение линейной функции, прямая линия, можно построить по двум точкам, но для точности построения определим три:
Нужно придавать значения х, подставлять полученные значения в уравнение и получать значения у:
Таблица:
х -1 0 1
у 5,5 3 0,5
2)Чтобы найти значение у при заданном значении х не обязательно определять его по графику, можно вычислить:
у = 3 - 2,5 * (-1) = 3 + 2,5 = 5,5 (есть в таблице)
Чтобы найти значение х при заданном значении у также подставляем в уравнение это значение у и вычисляем х:
7 = 3 - 2,5х
2,5х = 3 - 7
2,5х = -4
х = -1,6
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Объяснение:
а) область определения функции
левая граница между -2 и -1 приближенно -1,2
[-1,2;7]
б) область значений функции
[-2;6]
в) f(3)=-1
г) значения x, при которых f(x)=1
приближенно -0,9 ; 1.2
д) координаты точек пересечения с осью x
(-1;0)
приближенно (1,6 ; 0)
приближенно (4,5 ; 0)
е) значение аргумента, при которых значение функции отрицательны
приближенно (-1,2 ; 1)
приближенно (1,6;4,5)
ж) значение аргумента, при котором значение функции положительны.
приближенно (-1; 1,6)
приближенно (4,5 ; 7)