Участник roperd решил данное неравенство методом интервалов, однако этот метод - далеко не единственный метод решения подобных неравенств. Я считаю, что вам будет полезно о них знать.
Во-первых, левую часть данного неравенства можно преобразовать в квадратный трёхчлен, раскрыв скобки:
Т.е., перед нами квадратное неравенство, которое можно решить функциональным Для этого необходимо рассмотреть квадратичную функцию , и найти на оси x, используя график, такие значения аргумента, при которых значение данной функции будет больше или равно нулю:
1) y=0, если или
; найдём корни этого уравнения, например, через дискриминант:
Дискриминант положительный, значит данное уравнение имеет два корня:
т.е., это -2 и 3.
Это значит, что парабола пересеает ось x в точках с абсциссами -2 и 3. И, так как парабола имеет направленные вверх ветви(старший коэффициент положителен), то отрицательные значения y будут находиться ниже этой оси, т.е.
, если
или
, что, кстати говоря, не соответствует не одному из приведённых вариантов ответа, вероятно, вы допустили ошибку, вводя их.
Можно также использовать правило расщепления, когда неравенство определённого вида представляют, как совокупность равноцсильных систем неравенств, попробуйте что-либо узнать о нём.
1) Решить систему линейных уравнений (СЛУ) – это значит найти упорядоченный набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство (тождество). Кроме того, система может не иметь решений , то есть быть несовместной.
2) Решение СЛУ с двумя неизвестными представляет собой пару значений двух переменных (х,у) , который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений).
3) Система может иметь более одного решения. И если система имеет более одного решения, то таких решений бесчисленное множество .
4) Система может не иметь решения, то есть она будет несовместной.
5) Графический метод решения СЛУ с двумя переменными состоит в том, чтобы начертить графики двух заданных уравнений (это будут прямые). Затем уже по графикам можно делать выводы о количестве решений системы и нахождении их, если они существуют.
6) Если СЛУ с 2 переменными имеет единственное решение, то графики прямых пересекаются в одной точке .
7) Если СЛУ с 2 переменными не имеет решений, то графики прямых параллельны.
8) Если СЛУ с 2 переменными имеет бесчисленное множество решений, то графики прямых совпадают.
1) в 1 системе второе уравнение умножаем на -3, получается
-3,6у-2,4х=-5,4 и это уравнение складываем с первым, в результате получается -4,5у=-9; у=2, подставляем, например во второе, получается 2,4+0,8х=1,8; 0,8х=-0,6; х=-0,75
2) во второй системе второе уравнение умножаем на 2, получается
2,6у+1,6х=42,4 и его складываем с первым, получается
5х=47; х=9,4 подставляем во второе, например, получается
1,3у+0,8*9,4=21,2; 1,3у=13,68; у=-10. 68/130 у второго ответ мне не нравится, проверьте правильность написания системы
Решим данное неравенство методом интервалов.
(2x+4)(x-3) <= 0
Приравняем левую часть к нулю.
(2x+4)(x-3) = 0
Произведение равно нулю, когда один из множителей равен нулю.
(2x+4) = 0 или x-3 = 0
x = -2 или x = 3
Отметим получившиеся корни уравнения на координатной прямой.
Так как ветви параболы направлены вверх, то отрицательные значения мы будем иметь на промежутке [-2; 3].
ответ: [-2;3] (У вас, по-видимому, опечатка в ответе, так как 3 тоже входит в решения данного неравенства.)