М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gaynite57
gaynite57
26.07.2020 02:29 •  Алгебра

4. Используя теорему Безу, найдите остаток от деления многочлена: а) х^3+3х^2-15х+10 на х-1

х^2020 + х^1009-1 на х+1

👇
Ответ:
Proyd1
Proyd1
26.07.2020

Объяснение:

Число a - корень многочлена P(x) тогда и только тогда, когда P(x) делится без остатка на двучлен x−a .

Отсюда, в частности, следует, что множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0 .

Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).

Пусть a - целый корень приведенного многочлена P(x) с целыми коэффициентами. Тогда для любого целого k число P(k) делится на a−k .

Теорема Безу дает возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше: если P(a)=0, то заданный многочлен P(x) можно представить в виде:

P(x)=(x−a)Q(x)

Таким образом, один корень найден и далее находятся уже корни многочлена Q(x), степень которого на единицу меньше степени исходного многочлена. Иногда этим приемом - он называется понижением степени - можно найти все корни заданного многочлена.

4,8(71 оценок)
Ответ:
julv2
julv2
26.07.2020

Вот ответ .........

Дай 5 звезд


4. Используя теорему Безу, найдите остаток от деления многочлена: а) х^3+3х^2-15х+10 на х-1 х^2020 +
4,4(24 оценок)
Открыть все ответы
Ответ:
lamptambler
lamptambler
26.07.2020
Из предложенных выражений выберите квадратное

неравенство. Выпишите правильный ответ.

а) х 2 + 5х = 0 в) х 2 – 2х < 7

б) – 6х – 8 > х + 3 г) х + 9 = 4х – 16

2. Выясните, решением какого неравенства является число 2.

Выпишите правильный ответ.

а) х 2 – х < 0 в) х 2 + х – 3 > 0

б) – х 2 + 4х – 5 > 0 г) х 2 – 2х < 0

3. Решите неравенство методом интервалов и выпишите

верный ответ: (х – 5)(х + 3) > 0

а)

в)

– 5 3 – 3 5

б) г)

– 3 5 – 5 3

4. Установите соответствие между квадратными

неравенствами и их решениями. ответ запишите в таблицу.

А [–6; 2]

1 х 2 + 4х – 12 ≥ 0 Б (–∞; –2] U [6; +∞)

2 х 2 – 4х – 12 ≤ 0 В (–∞; –6] U [2; +∞)

3 х 2 + 4х – 12 ≤ 0 Г [–6; –2]

4 х 2 – 4х – 12 ≥ 0 Д [–2; 6]

Е (–∞; 2] U [–6; +∞)

5. Решите квадратные неравенства и запишите полученные

ответы.

а) – 2х 2 – 5х + 3 ≤ 0 б) 3х 2 – 4х + 7 >

4,8(94 оценок)
Ответ:
ники2017
ники2017
26.07.2020
Из предложенных выражений выберите квадратное

неравенство. Выпишите правильный ответ.

а) х 2 + 5х = 0 в) х 2 – 2х < 7

б) – 6х – 8 > х + 3 г) х + 9 = 4х – 16

2. Выясните, решением какого неравенства является число 2.

Выпишите правильный ответ.

а) х 2 – х < 0 в) х 2 + х – 3 > 0

б) – х 2 + 4х – 5 > 0 г) х 2 – 2х < 0

3. Решите неравенство методом интервалов и выпишите

верный ответ: (х – 5)(х + 3) > 0

а)

в)

– 5 3 – 3 5

б) г)

– 3 5 – 5 3

4. Установите соответствие между квадратными

неравенствами и их решениями. ответ запишите в таблицу.

А [–6; 2]

1 х 2 + 4х – 12 ≥ 0 Б (–∞; –2] U [6; +∞)

2 х 2 – 4х – 12 ≤ 0 В (–∞; –6] U [2; +∞)

3 х 2 + 4х – 12 ≤ 0 Г [–6; –2]

4 х 2 – 4х – 12 ≥ 0 Д [–2; 6]

Е (–∞; 2] U [–6; +∞)

5. Решите квадратные неравенства и запишите полученные

ответы.

а) – 2х 2 – 5х + 3 ≤ 0 б) 3х 2 – 4х + 7 >

4,5(22 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ