1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Доказать можно методом математической индукции... только есть нюанс -числа целые (а не натуральные))) 1) для четного целого n утверждение очевидно: n = 2k, k∈Z (2k)² - 5(2k) + 2 = 2*(2k² - 5k + 1) 2) для НЕчетного целого n: n = 2k+1, k∈Z (2k+1)² - 5(2k+1) + 2 = 4k² + 4k + 1 - 10k - 5 + 2 = 2*(2k² - 3k - 1)
для чисел, кратных трем, будет на один вариант больше представлений: n = 3k (число кратно трем) n = 3k+1 (число НЕ кратно трем --дает остаток 1) n = 3k+2 (число НЕ кратно трем --дает остаток 2) 1) (3k)³ + 2(3k) - 3 = 3*(9k³ + 2k - 1) 2) (3k+1)³ + 2(3k+1) - 3 = 27k³ + 27k² + 9k + 1 + 6k + 2 - 3 = = 3*(9k³ + 9k² + 3k) 3) (3k+2)³ + 2(3k+2) - 3 = 27k³ + 54k² + 36k + 8 + 6k + 4 - 3 = = 3*(9k³ + 18k² + 14k + 3)
можно было доказывать и в первом и во втором случае кратность только для первых двух слагаемых, т.к. третьи слагаемые в обоих случаях кратны заданным числам... чуть короче бы получилось...
1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое