1) х(х²-16) =0 пока мы приравниваем нулю,чтобы решить х(х-4)(х+4) =0 х1=0 х-4=0 отсюда х2= 4 х+4=0 отсюда х3= -4 рисуем луч, отмечаем эти точки
- 404⇒ Теперь возьми из интервала от минус ∞ до -4 любое значение и подставь его в данное первое неравенство вместо х, например х= -5 проверяем: (-5)³ - 16(-5)= -125+80= -45 <0 - верно, значит этот интервал подходит, далее смотрим второй интервал, возьми точку х= - 1, подставь в нерав-во (-1)³-16(-1)= -1 +16=15 <0 неверно! второй интервал не подходит,далее, третий интервал смотри от 0 до 4 возьми точку х=1 подставь её 1-16= -15< 0 -верно, последний интервал от 4 до плюс+∞ Пусть х= 5 подставь 5³-16·5=125-80< 0 неверно значит ответ такой : Х⊂от - ∞до -4∪от 0 до 4, не включая точки -4,0,4 ,так как стоит строгий знак неравенства < ( без равно)
-0,500,5⇒ Точно также из четырех интервалов бери пробные точки и подставь в нерав-во 4х³-х>0 Интервалы, в которых пробные точки обратят неравенство в верное и будут объединенным решением , возьми пробные точки, например -1, -0,1 0,1; 1( это с первого по четвертый интервал)
1 уравнение 4x=12+3y x=(12+3y)/4 подставляем значение х 3(12+3y)/4+4y=34, (36+9y)/4+4y=34 умножаем на 4, чтоб избавиться от знаменателя 36+9y+16y=136 9y+16y=136-36 25y=100 y=4
подставляет значение y в х
x=(12+3*4)/4 x=(12+12)/4 x=24/4 x=6
проверка 4*6-3*4=12 3*6+4*4=34
ответ: x=6; y=4
2 уравнение
2y=20+5x y=(20+5x)/2
подставляет y
2x-5(20+5x)/2=-8 2x-(100+25x)/2=-8
чтоб избавиться от знаменателя, умножим на 2 4x-(100+25)=-16 4x-100-25x=-16 4x-25x=-16+100 -21x=84 -x=84/21
Задана геометрическая прогрессия с параметрами;
Первый член: b1 = 1;
Знаменатель: q = 3;
Число членов: n = 10;
Находим: bn = b10;
bn = b1 * q^(n - 1);
b10 = b1 *q^(10 - 1) = 1 * 3^9 = 19683;
Сумма десяти членов прогрессии:
Sn = b1 *(q^n -1) / (q - 1);
S10 = 1 * (3^10 - 1) / (3 - 1) = (59049 - 1) / 2 = 29524.
Дана геометрическая прогрессия, ее параметры:
Знаменатель: q = 0,5;
Число членов: n = 8;
Последний член: bn = 2;
bn = b1 * q^(n - 1);
Sn = b1 *(q^n -1) / (q - 1);
Находим:
b8 = b1 * (0,5)^(8 - 1) = 2;
b1 = 2 / (1/2)^7 = 2 / (1 / 2^7) = 2 * 2^7 = 2^8 = 256;
Sn = b1 * (q^n -1) / (q - 1);
S8 = 256 * ((1/2)^8 - 1) / (0,5 - 1) = (1 - 256) / (-0,5) =255 * 2 = 510.
Для геометрической прогрессии заданы параметры:
Первый член: b1 = 2;
Число членов: n = 7;
Последний член: bn = 1458;
Определим знаменатель: q;
bn = b1 * q^(n - 1);
b7 = 2 * q^(7 - 1) = 1458;
q^6 = 1458 / 2 = 729;
q = 3;
Далее:
Sn = b1 * (q^n -1) / (q - 1);
S7 = 2 * (3^7 - 1) / (3 - 1) = 3^7 - 1 = 2186.
Имеем геометрическую прогрессию с параметрами:
Знаменатель: q = 3;
Последний член: bn = 567;
Сумма всех членов: Sn = 847;
Для двух неизвестных (b1, n) необходимо составить два уравнения;
bn = b1 * q^(n - 1);
Первый член: b1 = bn / q^(n - 1) = (3 * bn)/ q^n;
Сумма всех членов:
Sn = b1 * (q^n -1) / (q - 1) =
((3 * bn)/ q^n) * (q^n -1) / (q - 1);
847 = ((3 * 567)/ 3^n) * (3^n -1) / (3 - 1);
1694 = 1701 - (1701 / 3^n);
3^n = 1701 / (1701 - 1694) = 243;
n = 5;
b1 = (3 * bn)/ q^n = (3 * 567) / 3^5 = 1701 / 243 = 7.