М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
romababiy09
romababiy09
19.05.2020 06:43 •  Алгебра

Найти наименьший положительный период функции y=sinx+tgx

👇
Ответ:
putin12344
putin12344
19.05.2020

Как известно, если есть две периодические функции с периодами T1 и T2 , то периодом их суммы, разности и частного является число T, кратное T1 и T2.

Период sinx = 2\pik, где k - целое число.

Период tgx = \pin, где n - целое число.

Наименьшим положительным периодом будет являться число 2\pi, так как при k = 1 и n = 1, оно кратно обоим периодам.

Теперь проверим, что 2\pi действительно является периодом функции:

f(x) = f( x + T), f( x + 2\pi) = sin(x + 2\pi) + tg(x + 2\pi) = sinx + tgx.

Как видно из вышенаписанного, число 2\pi действительно является периодом функции y=sinx+tgx и является её наименьшим положительным периодом.

ответ: 2\pi

 

4,6(95 оценок)
Ответ:
Mikoсладкая
Mikoсладкая
19.05.2020

Наименьший положительный период функции - это наименьшее положительное число T, являющееся периодом данной функции.

Рассмотрим наименьшие периоды каждого слагаемого.

Для sinx  T₁=2π, для tgx T₂=π.

Период суммы - это наименьшее число, которое делится на Т₁ и Т₂.

 

Найти наименьший положительный период функции y=sinx+tgx   T = 2π

4,6(14 оценок)
Открыть все ответы
Ответ:
Ізабель
Ізабель
19.05.2020
Исходное число должно быть четырехзначным.
Пусть исходное число будет ABCD=1000A+100B+10C+D.
Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016:
1000A+100B+10C+D-(А+В+С+D)=2016
Раскроим скобки и решим:
1000A+100B+10C+D-А-В-С-D=2016
999А+99В+9С=2016
Сократим на 9:
111А+11В+С=224
Очевидно, что 1<А>3, т.е. А=2 (2000).
111*2+11В+С=224
 222+11В+С=224
11В+С=224-222
11В+С=2
С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число.
Значит В=0, тогда С=2-11*0=2
Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029.
9 – максимальное значение D, значит наибольшее возможное исходное значение 2029.
Проверим: 2029 – (2+2+0+9)=2029-13=2016
ответ: наибольшее возможное исходное значение число 2029
4,6(39 оценок)
Ответ:
polina5m
polina5m
19.05.2020
Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом
например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.
4,5(55 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ