А) 9^x = 3^(2x) 6^x = (2^x)*(3^x) 2^(2x+1) = 2*2^(2x) 3^(2x) + (2^x)*(3^x) = 2*2^(2x) - разделим обе части на 2^(2x) 1.5^(2x) + 1.5^x = 2, 1.5^(2x) + 1.5^x - 2 = 0 Замена: 1.5^x = t >0 t^2 + t - 2 = 0, D=1+4*2=9 t1 = -2 <0 - не удовл.условию замены t2 = 1 >0 1.5^x = 1, x=0 б) Разделим обе части уравнения на 5^(2x+4): (2^7 * 2^(2x)) / (5^(2x) * 5^4) + 1 + ( 2^(2x) * 2^x * 2^(-5)) / (5^(2x) * 5^4) = 0 (128/625) * 0.4^(2x) + (1/20000)*2^x * 0.4^(2x) = -1 В б) вы уверенны, что условие ВЕРНО записали? Потому что если в последней степени вместо 3х должно быть 2х - то решение было бы аналогично первой задачи. Осталось бы сделать замену и решить квадратное уравнение.
Если f(-x)=-f(x), то функция нечетная
В другом случае функция ни четная, ни нечетная
a) f(x)=5x^4+2x^2
f(x)=5(-x)^4+2(-x)^2=5x^4+2x^2=f(x) четная
б)f(x)=-6+sin^2x
f(-x)=-6+sin^2(-x)=-6+sin^2x=f(x) четная
в)f(x)=x|x|
f(-x)=(-x)|(-x)|=-x|x|=-f(x) нечетная
г)f(x)=x^2sinx
f(-x)=(-x)^2sin(-x)=-x^2sinx=-f(x) нечетная
д)f(x)=3x^2+cos3x/2
f(-x)=3(-x)^2+cos3(-x)/2=3x^2+cos3x/2=f(x) четная
е)f(x)=-10^8+2,5
f(-x)=-10^8+2,5=f(x) четная
ж)f(x)=2x^7+3x^3
f(-x)=2(-x)^7+3(-x)^3=-2x^7-3x^3=-(2x^7+3x^3)=-f(x) нечетная
з)f(x)=1/3x^3*tgx^2
f(-x)=1/3(-x)^3*tg(-x)^2=-1/3x^3*tgx^2=-(1/3x^3*tgx^2)=-f(x) нечетная