Выпишем простые числа от 11 до 37: 11, 13, 17, 19, 23, 29, 31, 37 Количество дробей, у которых числитель и знаменатель являются различными числами (дробь не равна 1) равно 8*7=56. Наименьшая такая дробь равна 11/37, наибольшая 37/11. Пусть в дроби x/y фиксирован числитель и равен x=a. Тогда чтобы эта дробь была больше 1/2, Знаменатель должен быть больше, чем 2a. Тогда рассмотрим каждое из чисел в качестве числителя. 1) a = 11, тогда y > 22 - из выписанных чисел таких 4 штуки. Поэтому получилось 4 дроби с числителем 11 2) a = 13, тогда y > 26 - 3 штуки 3) a = 17 => y > 34 - 1 штука 4) a = 19 => y > 38 - 0 штук Очевидно, что дальше будет так же по 0 штук. Суммируем полученные количества для каждого a и получаем 4+3+1=8 дробей, которые меньше 1/2 и у которых числитель и знаменатель составлены из перечисленных простых чисел.
Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
x=5x²
x-5x²=0
x(1-5x)=0
x=0 или 1-5х=0
-5х= -1 |÷(-5)
х=0,2
ответ : х1=0,2 ; х2=0.