- Как определить направление ветвей параболы?
Если а>0( значение при х² ) то ветви направлены вверх
если a< то ветви направлены вниз
- Как найти координаты вершины параболы?
Сначала находим абсциссу Хв=-b/2a, потом найденную цифру подставляем в уравнение вместо х и находим Ув
точка с координатами (Хв; Ув) и есть вершина параболы
- В каком случае квадратичная функция имеет наибольшее значение?
Если а∠0 ( значение при х²) , то функция принимает наибольшее значение в вершине
- В каком случае квадратичная функция имеет наименьшее значение?
Если а>0 , то функция принимает наименьшее значение в вершине
- Как найти наибольшее или наименьшее значение квадратичной функции?
определить направление ветвей и найти координаты вешины
а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
6) Решением неравенства является объединение двух промежутков
Объяснение:
36826=30000+6000+800+20+6
Объяснение:
(3)три десятки тысяч
(6)шесть тысяч
(8)восем сотен
(2)два десятка
(6)шесть единиц