1) Формула, задающая линейную функцию, имеет вид у = kx + b.
Так как прямая параллельна прямой у = - 2x +7, то угловые коэффициенты прямых равны, k = - 2, формула имеет вид у = - 2х + b.
2) Прямая у = - 2х + b проходит через точку А( - 2; - 4), тогда
- 4 = - 2•(-2) + b
- 4 = 4 + b
- 4 - 4 = b
- 8 = b
Формула примет вид: у = - 2х - 8.
ответ: у = - 8 - 2х.
2) у = (х - 3)² - (х - 2)(х + 4)
у = х² - 6х + 9 - (х² + 4х - 2х - 8) = х² - 6х + 9 - х² - 4х + 2х + 8 = - 8х + 17.
у = - 8х + 17
k = - 8; b = 17.
ответ: k = - 8; b = 17.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.