Объяснение:
Записать в стандартном виде
400000 = 4*10^5
23000 = 2,3*10^4
8760000 = 8,76*10^6
1230 = 1,23*10^3
43 = 4,3*10^1
0,00008 = 8*10^-5
0,0076 = 7,6*10^-3
0,098 = 9,8*10^-2
0,54 = 5,4*10^-1
0,1 = 1*10^-1
7000000 = 7*10^6
560000 = 5,6*10^5
2130000 = 2,13*10^6
19700 = 1,97*10^4
51 = 5,1*10^1
0,0007 = 7*10^-4
0,00678 = 6,78*10^-3
0,042 = 4,2*10^-2
0,34 = 3,4*10^-1
0,9 = 9*10^-1
Записать в виде натурального числа или десятичной дроби:
5 ∙ 106 = 5000000
2,7 ∙ 103 = 2700
1,56 ∙ 104 = 15600
6,78 ∙ 102 = 678
3 ∙ 10-6 = 0,000003
1,2 ∙ 10-4 = 0,00012
4,76 ∙ 10-3 = 0,00476
2,3 ∙ 10-1 = 0,23
2 ∙ 105 = 200000
7,7 ∙ 104 = 77000
5,86 ∙ 105 = 586000
2,18 ∙ 103 = 2180
4 ∙ 10-5 = 0,00004
7,2 ∙ 10-5 = 0,000072
6,12 ∙ 10-2 = 0,0612
6,5 ∙ 10-1 = 0,65
Находим нули производной:
eˣ=0 или 2eˣ-9=0
eˣ - не может равняться нулю, так как функция вида у=аˣ всегда больше нуля.
теперь воспользуемся методом интервалов
- +
--------------ln4.5----------------------->
Раз функция меняет знак с минуса на плюс, значит x=ln4.5 - точка минимума.
e≈2.7 ⇒
дан промежуток [1;3]
убедимся, что ln4.5 принадлежит данному промежутку:
1=lne
3=3*1=3lne=lne³
e³≈2.7³=19.683
lne<ln4.5<lne³ - зная, что е>1, знак неравенства сохраняется
e<4.5<e³ - равенство выполняется, значит, действительно ln4.5 принадлежит данному промежутку.
x=1, y(1)=e² -9e -2≈2.7²-9*2.7-2=-19.01
x=3, y(3)=e⁶-9e³-2≈208