1) Прямая пропорциональность у=кх, подставим значения х и у заданной точки -5=к*3, отсюда к=-5/3=-1 2/3, и функция у=-1 2/3*х
2) В точке пересечения с осью координата другой оси =0
а) с оью 0х у=0, тогда 0=1.2х-24, 1.2х=24, х=20; с осью 0у х=0, у=-24
б) 0х: у=0, 0=-3/5х+2, х=10/3=3 1/3; ось 0у х=0, у=2
в) график у=10 не зависит от х, т.е. для любого х прямая параллельна 0х и ее не пересекает, а пересекает только у=10
3) раз график параллелен оси 0х, то функция не зависит от х (см. пример 2), и имеет вид у=в, для заданной точки М(-3;1) у=1, значит в=1 и функция имеет вид у=1 для любого х, в том числе х=-3
АВСD - ромб
АС и ВD - диагонали.
ВD = 76
ОК ⊥DС
ОК = 19
Найти ∠А; ∠В; ∠С; ∠D.
Решеие:
Диагонали ромба всегда взаимно перпендикулярны и всегда точкой пересечения делятся пополам.
В прямоугольном ΔDОК катет ОК = 19,
гипотенуза DО = DВ/2 = 76/2=38.
Очевидно, что катет ОК равен половине гипотенузы DО
19 : 38 = 1/2, это означает, что напротив катета ОК лежит ∠ОDК, равный 30°.
∠ОDК= 30°.
Диагонали ромба всегда являются биссектрисами, значит, весь ∠АDC = 2·∠ODK = 2 · 30° = 60°.
∠ADC = ∠CBA = 60°.
∠BAD = ∠BCD = 180° - 60°=120°.
ответ: 60°; 120°; 60°; 120°.