Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
В решении.
Объяснение:
Волшебная карета, которая увезла Шрека и его принцессу в свадебное путешествие, первую часть пути ехала со скоростью 81 км/ч и проехала таким образом первые 162 км пути. Затем следующие 81 км карета ехала со скоростью 54 км/ч, и наконец, последний участок протяжённостью 54 км — со скоростью 27 км/ч.
Вычисли среднюю скорость кареты на протяжении всего пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
S = 162 + 81 + 54 = 297 (км).
t= 162/81 + 81/54 + 54/27 = 2 + 1,5 + 2 = 5,5 (часа).
v = S/t
v = 297/5,5 = 54 (км/час).