Объяснение:
на рисунке я все обозначила.
единичная окружность - это тригонометрическая окружность с центром в точке (0;0)
теперь у нас есть точка Р₀ (-3/5; 4/5)
нарисуем эту точку
теперь мы должны знать, что ось ох у нас является осью косинусов.
т.е. проекция точки на ось ох Р₀х есть cosα, или по другому координата х точки Р₀ есть cosα
в нашем случает cosα = -3/5
дальше ось оy - это ось синусов, т.е. проекция точки на ось оу Р₀у есть sinα, или по другому координата y точки Р₀ есть sinα
в нашем случает sinα = 4/5
тогда
для второй точки я уже расписывать не буду, на рисунке я ее "разрисовала" P₀ (-1/2; -√3/2)
cosα = -1/2
sinα = -√3/2
tgα = √3
сtgα = 1/√3=√3/3
для этой точки можно легко все проверить, потому что она обозначает угол в 240°
400 : 34 = 12 (кг) фруктов купили
Если нужно узнать сколько груш и сколько яблок:
За Х - количество килограммов яблок,
за У - количество килограммов груш
Решаем :
30х + 38у = 400
х + у = 12
из второго уравнения:
х = 12 - у
подставляем в 1 уравнение :
30 * (12 - у) + 38у = 400
360 - 30у + 38у = 400
8у = 40
у = 5 (кг) купили груш
подставляем во 2 уравнение:
х + 5 = 12
х = 12 - 5
х = 7 (кг) купили яблок
Проверка
(30 * 7) + (38 * 5) = 210 + 190 = 400 р - заплатили
ответ: 400 рублей
Объяснение:
1)
{ x^2 + xy = 2
{ y - 3x = 7
Решаем заменой
{ y = 3x + 7
{ x^2 + x(3x + 7) = 2
Решаем 2 уравнение
x^2 + 3x^2 + 7x - 2 = 0
4x^2 + 7x - 2 = 0
D = 7^2 - 4*4*(-2) = 49 + 32 = 81 = 9^2
x1 = (-7 - 9)/8 = -16/8 = -2; y1 = 3x + 7 = -6 + 7 = 1
x2 = (-7 + 9)/8 = 2/8 = 1/4; y2 = 3x + 7 = 3/4 + 7 = 7 3/4 = 31/4
ответ: (-2; 1); (1/4; 7 3/4)
2)
{ x^2 + y^2 = 16
{ x + y = 4
Возводим в квадрат 2 уравнение
{ x^2 + y^2 = 16
{ (x + y)^2 = 4^2
Раскрываем скобки
{ x^2 + y^2 = 16
{ x^2 + 2xy + y^2 = 16
Подставляем 1 уравнение во 2 уравнение
16 + 2xy = 16
2xy = 0
x = 0, y1 = 4, y2 = -4 - не подходит под 2 уравнение
y = 0, x1 = 4, x2 = -4 - не подходит под 2 уравнение
ответ: (4; 0); (0; 4)
3)
{ (x - 1)(y - 1) = 2
{ x + y = 5
Решаем заменой
{ y = 5 - x
{ (x - 1)(5 - x - 1) = 2
Решаем 2 уравнение
(x - 1)(4 - x) - 2 = 0
-x^2 + 5x - 4 - 2 = 0
Умножаем на -1
x^2 - 5x + 6 = 0
(x - 2)(x - 3) = 0
x1 = 2; y1 = 5 - x = 5 - 2 = 3
x2 = 3; y2 = 5 - x = 2
ответ: (2; 3); (3; 2)
4)
{ (x - 2)(y + 1) = 1
{ x - y = 3
Решаем заменой
{ y = x - 3
{ (x - 2)(x - 3 + 1) = 1
Решаем 2 уравнение
(x - 2)(x - 2) = 1
(x - 2)^2 - 1 = 0
(x - 2 - 1)(x - 2 + 1) = 0
(x - 3)(x - 1) = 0
x1 = 3; y1 = 0
x2 = 1; y2 = -2
ответ: (3; 0); (1; -2)