Так как логарифм б по основанию а равно 2, то б равно а в квадрате, тогда log(ab⁴)по основанию а=log(a(a²)⁴) по основанию а=loga⁹ по основанию а=9. ответ: 9.
(1) х+у=5 и х-у=1 у=5-х и у=х-1 а) Строим график функции у=5-х х=1, у=4 х=2, у=3 Отметь точки (1;4) и (2;3) и проведи через них линию на всю плоскость координат б) Строим график функции у=х-1 х=1, у=0 х=2, у=1 Отметь точки (1;0) и (2;1) и проведи через них линию на всю плоскость координат Отметь точку пересечения - это и есть ответ ответ: х=3, у=2
(2) 2х+3у=13 и 3х-у=3 у=(13-2х) /3 и у=3х-3 а) Строим график функции у=(13-2х) /3 х=2, у=3 х=5, у=1 Отметь точки (2;3) и (5;1) и проведи через них линию на всю плоскость координат б) Строим график функции у=3х-3 х=1, у=0 х=2, у=3 Отметь точки (1;0) и (2;3) и проведи через них линию на всю плоскость координат Отметь точку пересечения - это и есть ответ ответ: х=2, у=3
2sinx=tgx, tgx=sinx/cosx ⇒ sinx=tgxcosx
2tgxcosx=tgx
2tgxcosx-tgx=0
tgx(2cosx-1)=0
1) tgx=0 ⇒ x=πn, n∈Z
2)2cosx-1=0
2cosx=1
cosx=1/2 ⇒ x=(плюс-минус)π/3+2πn, n∈Z
ответ: x=πn, n∈Z; x=(плюс-минус)π/3+2πn, n∈Z
б) x∈[-2π;-π/2]
Данному промежутку принадлежат корни: -2π, -5π/3, -π
Так как логарифм б по основанию а равно 2, то б равно а в квадрате, тогда log(ab⁴)по основанию а=log(a(a²)⁴) по основанию а=loga⁹ по основанию а=9.
ответ: 9.
а) 2cos(π/2+x)=√3tgx, cos(π/2+x)=-sinx
-2sinx=√3tgx, tgx=six/cosx ⇒ sinx=tgxcosx
-2tgxcosx=√3tgx
-2tgxcosx-√3tgx=0
tgx(-2cosx-√3)=0
1) tgx=0 ⇒ x=πn, n∈Z
2) -2cosx-√3=0
-2cosx=√3
cosx=-√3/2
x=(плюс-минус)5π/6+2πn, n∈Z
ответ: x=πn, n∈Z; x=(плюс-минус)5π/6+2πn, n∈Z
б) x∈[-3π;-3π/2]
Данному промежутку принадлежат корни: -3π, -13π/6, -2π