М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
feafea201006
feafea201006
16.05.2023 01:29 •  Алгебра

1) два поля прямоугольной формы имеют общую площадь 80 м2. длина первого поля 19 м, длина второго поля 25 м. найдите ширину каждого поля, если известно, что ширина первого поля на 8 м больше ширины второго. 2) первый комбайнёр убирал в день 2 га кукурузы больше, чем второй и проработал 8 дней, а второй проработал 10 дней. сколько гектаров кукурузы за день, если вместе они убирали кукурузы с 556 га ( необходимо решить с уравнений)

👇
Ответ:
Gungame02
Gungame02
16.05.2023
№2.
Второй комбайнер:
Производительность - х  га/день
Количество дней -  10 дней
Объем работы  - 10х  га

Первый комбайнер:
Производительность - (х+2) га/день
Количество дней  - 8 дней
Объем работы  - 8(х+2)  га

Объём работы всего -  556 га

10х+8(х+2) =556
10х+8х+16 =556
18х=556-16
18х= 540
х=540:18
х=30  га/ день  -  второй комбайнер
30+2 = 32 га/день  - первый комбайнер
Проверим:
32*8 +30*10= 256+ 300=556 га - объем работы.

ответ:  32 га/день кукурузы убирал первый комбайнер, 30 га- второй.

№1.
Общая площадь поля = площадь 1-го поля +  площадь 2-го поля.
Второе поле:
Ширина -  х  м
Длина - 25 м
Площадь - 25х м²

Первое поле:
Ширина - (х+8) м
Длина - 19 м
Площадь  - 19(х+8)= (19х+152) м²  = 19х м² + 152 м²  
Общая площадь 80 м².  
 Это  не реально. Т.к. получается ,  что площадь второго поля  уже больше  , чем  80 м² .
Проверь условие!
Может там  общая площадь в КМ ²  или разница в ширине в СМ.??? 
4,7(51 оценок)
Открыть все ответы
Ответ:
emmavalse
emmavalse
16.05.2023

3,84

Объяснение:

Проводя различные измерения, решая уравнения графическим выполняя арифметические вычисления, часто получают приближенные значения, а не точные. Например, при вычислении корня числа может получиться бесконечная непериодическая дробь (т. е. иррациональное число). Кроме того, существуют бесконечные периодические дроби, использовать которые в вычислениях также неудобно.

Поэтому числа, являющиеся бесконечными десятичными дробями или конечными, но имеющими множество знаков после запятой, принято округлять.

Когда округление выполняется в большую сторону, то говорят о приближении по избытку. Когда округление выполняется в меньшую сторону, то говорят о приближении по недостатку.

Полученное при округлении число называют приближенным по недостатку или избытку с определенной точностью. Рассмотрим несколько примеров приближения.

Число π является бесконечной дробью 3,1415926535... Обычно его округляют с точностью до 0,01. Это значит, что после запятой оставляют только два знака. При приближении по избытку получится 3,15. При приближении по недостатку получится 3,14.

Для числа π обычно используют приближение по недостатку, так как согласно правилу округления положительные числа округляются в большую сторону, если первая отбрасываемая цифра 5 или больше пяти. Так как у числа π третья цифра после запятой — это 1, то округление выполняется в меньшую сторону, то есть для расчетов выполняется приближение по недостатку.

Однако, несмотря на правила округления, имеют право быть приближения как по недостатку, так и по избытку.

Если выполнять приближение числа π с точностью до 0,0001, то по избытку получим π ≈ 3,1416, а по недостатку π ≈ 3,1415.

Рассмотрим иррациональное число √2, которое равно 1,414213... . Вычислим его приближение по недостатку и по избытку с точностью до 0,001. Поскольку приближение выполняется до тысячных долей, то у числа надо оставить три знака после запятой. При приближении по недостатку просто отбрасываются все цифры после третьей после запятой. При приближении по избытку цифры после третьей после запятой отбрасываются, а третья цифра увеличивается на 1. Таким образом, приближение по недостатку будет √2 ≈ 1,414, а по избытку √2 ≈ 1,415.

Но примеры, рассмотренные выше, это положительные числа. А так ли обстоит дело при приближении отрицательных чисел. Если взять число –√2 = –1,414213..., то его приближением по избытку до тысячных долей будет –1,414, так как это число больше, чем –√2. А вот приближением по недостатку будет –1,415, так как это число меньше, чем –√2.

4,6(54 оценок)
Ответ:
MrLED
MrLED
16.05.2023

8sin^2x + 2\sqrt{3}cosx + 1 = 0\\8(1-cos^2x) + 2\sqrt{3}cosx + 1 = 0\\8 - 8cos^2x + 2\sqrt{3}cosx + 1 = 0\\8cos^2x - 2\sqrt{3}cosx - 9 = 0\\\frac{D}{4} = 3 + 72 = 75 = (5\sqrt{3})^2\\cosx = \frac{\sqrt{3}\pm5\sqrt{3}}{8};\\

Так как функция косинус по модулю не превосходит единицы в поле действительных чисел, то выбираем cosx = -\frac{\sqrt{3}}{2}

Далее решаем это уравнение:

x = \pm arccos(\frac{-\sqrt{3}}{2}) + 2\pi k\\x = \pm \frac{5\pi}{6} + 2\pi k, k \in Z

По условию нужно найти корни на промежутке [-\frac{7\pi}{2}; -2\pi].

Это можно сделать несколькими например, с неравенства:

-\frac{7\pi}{2} \leq \pm \frac{5\pi}{6} + 2\pi k \leq-2\pi\\-21 \leq \pm 5 + 12k \leq -12

Рассмотрим случай, когда 5 имеет знак "плюс":

-21 \leq 5 + 12k \leq -12\\-26 \leq 12k \leq -17\\-\frac{13}{6} \leq k \leq -\frac{17}{12}

Очевидно, что из целых k подходит k = -2.

Теперь рассмотрим случай, когда 5 имеет знак "минус":

-21 \leq -5 + 12k \leq -12\\-16 \leq 12k \leq -7\\-\frac{4}{3} \leq k \leq -\frac{7}{12}

k = -1 нам подходит.

Теперь подставляем полученные k в серию корней:

1) Когда плюс - k = -2, т. е. x = \frac{5\pi}{6} - 4\pi = -\frac{19}{6}\pi

2) Когда минус - k = -1, т. е. x = -\frac{5\pi}{6} -2\pi = -\frac{17\pi}{6}

ответ: а) x = \pm \frac{5\pi}{6} + 2\pi k, k \in Z

           б) -\frac{17\pi}{6}\\-\frac{19\pi}{6}

4,5(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ