7–10. Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней. Решаем уравнения, находим корни уравнения и сравниваем ответы.
7. 1) 
число в корне не может равняться отрицательному числу, корней уравнения нет.
2) 
число в модуле не может равняться отрицательному числу, корней уравнения нет.
=> уравнения равносильные.
8. 1) 

корней уравнения нет.
2) 

корней уравнения нет.
=> уравнения равносильные.
9. 1) 
ОДЗ:
,
;



(не удовлетворяет ОДЗ), 
ответ: 
2) 


, 
ответ:
; 
=> уравнения не равносильные.
10. 1) 
ОДЗ:
,
;



ответ: 
2) 

ответ: 
=> уравнения равносильные.

12–16. Необходимо найти сумму корней уравнения. Решаем уравнение, находим корни уравнения, складываем их. Если уравнение имеет один корень, то суммой (ответом) будет значение корня уравнения.
12. 
ОДЗ:
,
;



,
(не удовлетворяет ОДЗ)
ответ: 
13. 
ОДЗ:
;







ответ: 
14. 
ОДЗ:
,
;






ответ: 
15. 
ОДЗ:
,
,
,
;





ответ: 
16. 
ОДЗ:
;





ответ: 
все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)