Дано: ∆АВС
EF║AB; PS║BC; KM║AC;
r₁; r₂; r₃ - радиусы вписанных окружностей в ∆KPO; ∆OFM; ∆EOS.
Найти R - радиус окружности, вписанной в ∆АВС
Решение.
1)
Пусть
а - основание ∆KPO;
b - основание ∆EOS.
c - основание ∆OFM.
Но
а = КО = АЕ, как противоположные стороны параллелограмма АКОЕ.
с = ОМ = SC, как противоположные стороны параллелограмма SOMC.
Получаем
(a+b+c) - основание АС у ∆АВС.
2)
Все три внутренних треугольника подобны между собой и подобны данному ∆АВС, т.к. их соответственные стороны параллельны.
В в подобных треугольниках соответствующие стороны и все соответствующие линии пропорциональны.
Из подобия следуют три пропорциональности:
а/(a+b+c)=r₁/R;
b/(a+b+c)=r₃/R;
c/(a+b+c)=r₂/R;
Сложим эти пропорции.
а/(a+b+c) + b/(a+b+c) + c/(a+b+c)= r₁/R + r₃/R + r₂/R;
(a+b+c)/(a+b+c) = (r₁+r₂+r₃)/R;
1 = (r₁+r₂+r₃)/R;
R = (r₁+r₂+r₃).
ответ: R = r₁+r₂+r₃.
V₁= 1/t₁ (1 круг за t₁ минут)
t₂= t₁+5
V₂= 1/(t₁+5)
S₂= S₁-1 (кругов)
V₂= S₂/60 <=> 1/(t₁+5) = (S₁-1)/60
S₁= V₁·60 <=> S₁= 60/t₁
1/(t₁+5) = [(60/t₁) -1]/60 <=> (60-t₁)/60t₁ - 1/(t₁+5) =0 <=>
[(60-t₁)(t₁+5) -60t₁] / 60t₁(t₁+5) =0 <=>
---
60t₁ -t₁² +300 -5t₁ -60t₁ =0 <=> t₁² +5t₁ -300 =0 <=>
[ t₁= -20 (t₁>0)
[ t₁=15
---
ответ:
Один карт проходил круг за 15 мин, другой - за 20 мин.