Смотри на рисунке показано что проекция выходит за пределы треугольника, так как расстояни от точки до прямой есть перпендикуляр проведенный из данной точки к данной прямой. Далее смотрим, у нас полчился треугольник ВС и допустим М(ВСМ). В нем 1. угол равен 90 градусов, воторой 60( смежный с 120) и третий следовательно 30 градусов. В прямоугольном треугольнике катет лежащий напротив угла в 30 градусов равен половине гипотенузы. слеовательно равен 3. Далее по теореме пифагора проекция наклонной получается равна 5. и по той же теореме пифагора наша искомая наклонная равна 6.
Каноническое уравнение, задающее эллипс, выглядит так:
Перепишем уравнение эллипса, поменяв местами параметры и
:
При этом мы получим конгруэнтный эллипс, только повёрнутый в системе координат на 90° (конгруэнтность следует из симметричности канонического уравнения). Поэтому он будет иметь тот же эксцентриситет и то же фокальное расстояние.
Найдём эксцентриситет:
Найдём фокальное расстояние (полурасстояние между фокусами):
Тогда расстояние между фокусами в два раза больше: .
ответ: 6 ед.
На чертеже изображён данный эллипс. и
— его фокусы.
5^0,1x*5^(0.06)=5^(x^2)
произведение равносильно сумме степеней
5^(0,1x+0.06)=5^(x^2)
основания одинаковые приравниваем степени
x^2-0,1x-0,06=0
x=(0,1+-sqrt(0,01+0,24))/2=(0,1+-0,5)/2
x1=-0,2 x2=0,3
2)
sqrt(x+12)-2=sqrt(x)
x+12=x+4+4sqrt(x)
sqrt(x)=2
x=4