а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.б) уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
Объяснение:
Уравнение имеет один корень при D = 0.
a) D = a^2 - 100
a^2 = 100
a = -10 или a = 10
Найдём этот корень:
5x^2 - 10x + 5 = 0 или 5x^2 + 10x + 5 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
б) 3x^2 - ax + 3 = 0
D = a^2 - 36
a^2 = 36
a = 6 или а = -6
Найдём этот корень:
3x^2 - 6x + 3 = 0 или 3x^2 + 6x + 3 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
Объяснение:
Пусть 1 -я труба заполняет бассейн за х часов, тогда 2-я труба заполнит за (х+5) часов.
За 1 час первая труба заполнит 1/х часть трубы, а за 6 часов 6/х часть трубы.
За 1 час вторая труба заполнит 1/(х+5) часть трубы, а за 6 часов 6/(х+5) часть трубы.
Составим и решим уравнение
6/х+6/(х+5)=1 х>0
6(х+5)+6х=х(х+5)
6х+30+6х=х²+5х
х²-7х-30=0
По теореме, обратной теореме Виета х1=-3; х2=10
х1=-3 - не подходит так как х>0
1 -я труба заполняет бассейн за 10 часов, тогда 2-я труба заполнит за 10+5 =15часов.
ответ:1 -я труба за 10 часов; 2-я труба заполнит за 15 часов.
-(а-3)(а)(-3)(0)(3)(6)>x
а - 3 < 0
3 + a < 0 К 3 прибавляем отрицательное число. Например (-1).
Тогда сумма будет больше нуля. Если прибавим (-3), получим 0. А вот если прибавим число еще меньше (-5; -12), то попадем на числовой оси в точку левее нуля.
6 - а > 0
Вычитание заменяем сложением с противоположным числом.
6 - (-2)=6 + 2. Поэтому при любом значении "а", хоть (-100), получим число больше нуля.
НОВОЕ ЗАДАНИЕ.
а < -3
Определить знак выражения
(а - 3)*( 3 + а) / (6 - а)
Как разобрано выше
а - 3 < 0
3 + a < 0
6 - a > 0
Тогда минус на минус будет плюс.
Плюс разделить на плюс тоже плюс. Это ответ: выражение > 0.