М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
autegenova
autegenova
24.11.2020 20:55 •  Алгебра

пройти тест Алгебра задания функций. График функции


пройти тест Алгебра задания функций. График функции
пройти тест Алгебра задания функций. График функции
пройти тест Алгебра задания функций. График функции
пройти тест Алгебра задания функций. График функции

👇
Ответ:
Pipidastet
Pipidastet
24.11.2020

Объяснение:

1)В, т.к. у убывающей функции с ростом аргумента уменьшается значение

2)В, т. к. у возрастающей функции с ростом аргумента растет и значение функции

4,4(21 оценок)
Открыть все ответы
Ответ:
kuliksvera
kuliksvera
24.11.2020
(x-3)(x+1)+3(x-3) √(x+1)/(x - 3) = (a+2)(a-1) ;  a -?  хотя бы один корень

ОДЗ: (x+1)/(x-3) ≥0  ⇔ {(x+1)(x-3) ≥0 ; x ≠3 , т.е. x∈(-∞; -1] ∪ (3 ;∞) .
В  ОДЗ  данное уравнение ⇔ (x-3)(x+1)±3 √(x+1)(x - 3) = (a+2)(a-1). 
( знак " -" ,  если   x <3  и   знак "+"  если   x >3 ) ;
заменим  √(x+1)(x - 3) =√(x² -2x - 3)= t  ≥ 0  получится квадратное уравнение  t² ±3t  - (a+2)(a-1) =0  с дискриминантом
D =(±3)² +4(a+2)(a-1) = 4a+4a+1 =( 2a +1)²   ≥ 0. 
рассмотрим  два варианта :
a) x∈ (- ∞ ; 1]  .
t² - 3t -(a+2)(a-1) =0 ; 
t₁ = (3-2a-1) /2 =  -(a -1)   ;
t₂ = (3+2a+1) /2 = a+2 .
* * * можно было и догадаться  [t = -(a-1) ; t = (a+2) . Виет  * * *
[√(x² -2x -3)  = -(a -1)  ; √(x² -2x -3)  = a+2 .
---
a₁)  a ≤ 1  * * *  -(a -1)  ≥ 0 * * *
√(x² -2x -3)  = -(a -1)  
x² -2x -3  = (- (a -1)) ² .
x² -2x - 3 -(a -1)² = 0 .  D₁/4  =1 +3 +(a -1)²  = 4 +(a -1)²  ≥ 2²
x₁=1+√(4 +(a -1)²)   ≥ 3  ∉ (-∞; 1].
x₂=1 - √(4 +(a -1)²)     ≤ 1. в частности    если  a=1 ⇒ x =1.
a₂)  a ≥ -2  * * * a+2 ≥ 0 * * *
x² -2x -3  = (a+2)² ;
x² -2x -3  - (a+2)²  =0    D₂/4  =1 +3 +(a +2)²  =4+(a+2)²  ≥ 2².
x₁' =1+√(4+(a+2)² )   >1 ∉ (-∞; 1].
x₂'=1 - √(4+(a+2)² )      ≤ 1. в частности , если  a= -2 ⇒ x =1. . 
 
b) x > 3
t² +3t -(a+2)(a-1) =0    * * *
t₃ =(-3-2a -1)/2 = -( a +2) ;  
t₄ =(-3+2a +1)/2 = (a -1).
 * * * t₃=t₂  и  t₄  = - t₁  не случайно  * * *
b₁)  √(x² -2x - 3 ) = -(a+2)    
a+2 < 0  * * * (если  a = -2 ⇒ [x =1 ; x =3  ∉ ОДЗ  (3 ;∞)  * * *
x² -2x - 3 = (a+2)² ;
x² -2x -3 -(a +2)²  =0  ; D/4 =1+3+(a +2)²= 4 +(a+2)²  ≥ 2² .
x₃ =1+ √(4 +(a+2)² ) , если  a < - 2.
x₄ =1 - √(2+a ) .∉  (3 ;∞)
b₂)  √(x² -2x - 3) = a -1 ;
a  >1  (если   a =1⇒[ x = -1 ; x =3  ∉  (3 ;∞) 
x² -2x - 3 = (a -1)² ;
x² -2x - 3 - (a -1)²  =0 ;   D/4 = 1  +3+ (a -1)² = 4 +(a -1)²  > 2²
x₃' =1+ √(4 +(a-1)² )  , если  a > 1
x₄' =1 - √((4 +(a-1)² ) .∉  (3 ;∞)

ответ :  1+ √(4 +(a+2)² ) ,  если  a < - 2;
              1 - √(4 +(a+2)² ) ,  если   a ≥ -2 ;
              1 - √(4 +(a -1)²)  ,  если а ≤ 1  ;      .
              1+ √(4 +(a -1)² )  , если  a > 1
4,5(37 оценок)
Ответ:
papashamuslimo
papashamuslimo
24.11.2020
В общем виде это знаменитое неравенство Коши о том что среднее геометрическое не превосходит среднего арифментического для положительных чисел и равняется при равенстве чисел
(a₁+a₂+a₃++aₓ)/x ≥ ˣ√ (a₁a₂a₃aₓ)
a₁ aₓ ≥0
докажем сначала для 2-х
(a₁+a₂)/2 ≥ √a₁a₂
a₁+a₂≥ 2√a₁a₂
a₁+a₂ - 2√a₁a₂ ≥ 0
(√a₁ - √a₂) ≥ 0 квадрат всегда больше равен 0
докажем на основании этой теоремы что
(a₁+a₂+a₃+a₄)/4 ≥ ⁴√a₁a₂a₃a₄
теперь рассмотрим некие преобразования 
[ (a₁+a₂)/2 + (a₃+a₄)/2 ] / 2 ≥ √ ((a₁+a₂)/2) * ((a₃+a₄)/2)
(a₁+a₂+a₃+a₄)/4 ≥ √ ((√a₁a₂)* (√a₃a₄) = √√(a₁a₂a₃a₄)=⁴√(a₁a₂a₃a₄) чтд

можно доказать в общем для n переменных по методу математической индукции
вышеуказанный метод модно применять для степеней 2 для 2 4 8 16 итд членов
4,6(38 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ