М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tetyana5
tetyana5
26.04.2023 23:35 •  Алгебра

Составить рекурретное соотношение 1, a/1!, a^2/2!, a^3/3!

👇
Ответ:

Объяснение:

Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:

Записать соответствующее однородное рекуррентное уравнение (РУ):

pn+kan+k+pn+k−1an+k−1+...+pnan=f→→pn+kan+k+pn+k−1an+k−1+...+pnan=0.

Выписать для него характеристическое уравнение и найти его корни λi

pn+kλk+pn+k−1λk−1+...+pn−1λ+pn=0.

Выписать согласно полученным корням λ1,...,λk общее решение однородного рекуррентного соотношения (подробнее теорию см. по ссылке [1] ниже).

C1λn1+...+Ckλnk для случая различных простых корней,

C1λn1+C2nλn1+...+Cmnmλn1+...+Ckλnk для случая корня λ1кратностиm.

Подобрать частное решение неоднородного рекуррентного соотношения по виду правой части (особенно удобно для правых частей вида μn∗P(n), P(n) - многочлен от n).

Представить общее решение неоднородного РУ как сумму общего решения соответствующего однородного РУ и частного решения неоднородного РУ.

Подставить начальные условия a0,a1,...,ak−1 и получить значения констант C1,...,Ck.

4,6(53 оценок)
Открыть все ответы
Ответ:
Seallk
Seallk
26.04.2023
Представьте, что выписали количество решённых учениками задач, все 40 чисел, друг за другом. Получится числовой ряд.
0; 1; 1; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5;  5;  5; 5; 6; 6; 6; 6; 6; 6; 7; 7; 7 
Эти числа взяли из таблицы:
Решили 0 задач -1 ученик (0 повторится 1 раз)
Решили 1 задачу - 2 ученика (1 повторится 2 раза)
Решили 2 задачи - 3 (2 повторится 3 раза)
И так далее:
3-7 
4-10
5-8
6-6
7-3
Мода: число, которое в данном ряду встречается чаще других. 10 учеников решили 4 задачи, мода 4. 
Размах: разность между наибольшим и наименьшим  числами ряда.
Наибольшее количество решённых задач 7, наименьшее 0,
7-0=7, размах равен 7.
Медиана ряда:
Медианой ряда, в котором чётное количество членов, является полусумма двух стоящих посередине чисел упорядоченного по возрастанию ряда. Если выписать весь ряд из 40 чисел, то на 20 месте будет стоять число 4, на 21 месте тоже 4. Медиана (4+4):2=4
Среднее количество решённых задач одним учеником: все 40 чисел складываем и делим на 40, получится 166:40=4,15
4,4(26 оценок)
Ответ:
87009522377
87009522377
26.04.2023
1. Вариант 4 является арифметической прогрессией

2. q=b2:b1=(1•8)/4=2
bn=b1•q^(n-1)=1/8•2^n:2=1/4•2^n
1/4•2^n=8
2^n=32
2^n=2^5
n=5
Является b5=8
1/4•2^n=12
2^n=48
Не является
1/4•2^n=16
2^n=64
2^n=2^6
n=6
Является b6=16
1/4•2^n=32
2^n=128
2^n=2^7
n=7
Является b7=32
ответ: вариант 2.

3. q=b2/b1=9/27=1/3
b6=b1•q^5=27•1/243=1/9
ответ: b6=1/9

4. 45–7n>0
–7n>–45
n<6 3/7
ответ: в последовательности 6 первых членов положительны, вариант 3.

5. a1=1400; d=100; an=5000; n-?
an = a1+d(n–1) = 1400+100n–100 =
= 1300+100n
1300+100n=5000
100n=3700
n=37
ответ: за 37 дней альпинисты покорили высоту.

6. {b1+b2+b3=112
{b4+b5+b6=14
{b1+b1•q+b1•q^2=112
{b1•q^3+b1•q^4+b1•q^5=14
{b1(1+q+q^2)=112
{b1•q^3(1+q+q^2)=14
Разделим первое уравнение на второе:
1/q^3=8
q^3=1/8
q^3=(1/2)^3
q=1/2
b1 = 112/(1+q+q^2) = 112/(1+1/2+1/4) =
= 112/(7/4) = (112•4)/7 = 64
b7=b1•q^6=64•1/64=1
ответ: b7=1
4,6(81 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ