Пример. Решим систему уравнений:
{
3
x
+
y
=
7
−
5
x
+
2
y
=
3
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
{
y
=
7
—
3
x
−
5
x
+
2
(
7
−
3
x
)
=
3
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
−
5
x
+
2
(
7
−
3
x
)
=
3
⇒
−
5
x
+
14
−
6
x
=
3
⇒
−
11
x
=
−
11
⇒
x
=
1
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
y
=
7
−
3
⋅
1
⇒
y
=
4
Пара (1;4) — решение системы
Возведем левую и правую части уравнения в квадрат
(х+1)^2 = (2(x-2))^2
Перенесем правую часть уравнения в левую и приравняем к нулю:
(х+1)^2 - (2(x-2))^2 = 0
По формуле сокращенного умножения (разность квадратов) упростим
( (х+1) - 2(x-2) )( (х+1) + 2(x-2) ) = 0
(х+1-2х+4)(х+1+2х-4) = 0
(-х + 5)(3х - 3)=0
х1 = 5 х2 = 1
Сделаем проверку:
Проверяем корень х1=5
| 5+1| = 2 |5-2|
|6| = 2 |4|
6 не равно 8 Следовательно х1 = 5 не является корнем
Проверяем корень х2=1
|1+1| = 2 |1-2|
|2| = 2 |-1|
2 = 2 Следовательно х2=1 - корень
ответ: так как корень единственный, то сумма корней будет равна 1