Для нахождения max или min нужно воспользоваться производной
y= cos x
y`= - sin x
y`=0; -sin x=0; x=πn; n∈Z
точки, в которых производная равна 0, являются точками экстремума функции. (т.е. точками или max или min)
определим знаки производной учитывая наш отрезок
0 (п/4) п(5п/3) 2п
y`<0 y`>0
функция убывает функция возрастает
Значит х=п, точка минимума функции
cos (п) = -1
Определим точки максимума на отрезке
т.к. максимумы функции бубт точки х=0 и х= 2п
то проверим значение функции вточках х=п/4 и х=5п/3 и сравним
cos (п/4)=√2/2; cos (5п/3)=1/2
Значит наименьшее значение функции в точке х=п и равно -1
наибольшее значение функции в точке х= п/4 и равно √2/2
Для нахождения max или min нужно воспользоваться производной
y= cos x
y`= - sin x
y`=0; -sin x=0; x=πn; n∈Z
точки, в которых производная равна 0, являются точками экстремума функции. (т.е. точками или max или min)
определим знаки производной учитывая наш отрезок
0 (п/4) п(5п/3) 2п
y`<0 y`>0
функция убывает функция возрастает
Значит х=п, точка минимума функции
cos (п) = -1
Определим точки максимума на отрезке
т.к. максимумы функции бубт точки х=0 и х= 2п
то проверим значение функции вточках х=п/4 и х=5п/3 и сравним
cos (п/4)=√2/2; cos (5п/3)=1/2
Значит наименьшее значение функции в точке х=п и равно -1
наибольшее значение функции в точке х= п/4 и равно √2/2
5n^2+10=5*(n^2+2)
тем самым мы получаем что квадрат должен быть кратен 5.
Пусть 5*k - это число, квадрат которого должно образовать выражение 5*(n^2+2)
тогда
5*(n^2+2)=25*k^2
или
n^2=5*k^2-2
Произведение 5*k^2 оканчивается либо на 5 либо на ноль, следовательно разность 5*k^2-2 оканчивается либо на 8 ли на 3.
Получается что n^2 должен оканчиваться либо на 8 либо на 3, что не возвожно, так как квадраты могут оканчиваться на одно из чисел 0,1,4,5,6,9
Следовательно 5n^2+10 не может быть квадратом натурального числа.