М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kik678
kik678
24.02.2021 18:35 •  Алгебра

До кожного завдання доберіть спільний знаменник 1. а/10 і b/4
2. 2/3x-1/5x
3. x/y i x/5
4. x/3-y/4

a. 20
б. 12
в. 5у
г. 15х
д. 30х

р.s: / это дробь

👇
Открыть все ответы
Ответ:
LizaOneLove8
LizaOneLove8
24.02.2021
y= x^2-7x+10/2x-10. 
x^2-7x+10=0
Д=49-40=9=3^2
Х1=2, Х2=5
x^2-7x+10/2x-10=(Х-2)(Х-5)/2(Х-5)=Х-2/2 
у=x/2-1, кроме одной точки 2x-10=0 (получаем x=5 и y=1,5 
Далее, когда 2прямые не имеют общих точек, правильно, когда они параллельны. Для прямой задаваемой формулой 
y=ax+b будут параллельны все прямые, задаваемые y=ax+c, где b и c любые числа, у тебя y=kx, следовательно, 
k=1/2 и прямая, соответственно, y=x/2 . Но тебе еще подойдет прямая , которая проходит 
через точку (0,0) и (5;1,5) ее k=y/x(второй точки) =1,5/5=3/10=0,3. Итог, k может принимать 2 значения k= 0,5 и k=0,3
4,4(40 оценок)
Ответ:
prvvk
prvvk
24.02.2021

Чтобы уравнение имело  действительное решение   ,  достаточно чтобы дискриминант был неотрицательным.

D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0

То  есть ,  необходимо доказать ,  что  при любых a и b справедливо строгое неравенство :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)

 (a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)

Заметим ,  что  когда  a=b  , получаем  что  0=0 , то есть условие выполнено.  И  в этом случае уравнение имеет бесконечно много решений.

Теперь,  поскольку  мы разобрали этот случай и  (a-b)^2>=0 , то для случая  a≠b , можно поделить обе части неравентсва на (a-b)^2  не меняя знак неравенства  :

(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)

( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)

Теперь сделаем слудующий прием , поскольку  (a^2+b^2)^2>0   при a≠b≠0

То можно поделить на это выражение обе части неравенства не меняя его знак :

(  1+ ab/(a^2+b^2)  )^2>= 1+ 2ab/(a^2+b^2)

Тогда можно сделать замену:

ab/(a^2+b^2)=t

(1+t)^2>=1+2t

t^2+2t+1>=1+2t

t^2>=0 (верно)

Таким образом :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то  есть  D>=0.

Вывод :  уравнение  имеет  действительное решение при  любых действительных  а и b.

Что и требовалось доказать.

4,4(14 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ