Последовательные четные числа отличаются друг от друга на 2, поэтому:
Пусть среднее из этих трех чисел будет х , тогда первое будет х - 2, а последнее х + 2. Тогда квадрат второго запишем как х², а удвоенное произведение первого и третьего - как 2(х - 2)(х + 2). Учитывая, что х² на 56 меньше, чем 2(х - 2)(х + 2), составим уравнение и решим его: Применяем формулу разности квадратов:
Второй корень не подходит по условию (нам нужны только натуральные числа), значит, х = 8; тогда три задуманных числа - это 6, 8 и 10.
|x| - это расстояние от нуля до x, поэтому решением этой системы неравенств (ведь тут не одно неравенство, а два) является объединение двух интервалов (-10; -4)∪(4;10). Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу. Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.
15 8/21
Объяснение:
(1/4)⁻²-(-3/8)⁰+(2/3)³ ÷7/9=16-1 +8/27 ·9/7=15 +8/(3·7)=15 8/21