1. 5(2a+1)-3=10a+5-3=10a-2=2(5a-1)
2. 18a^3+6a^2=6a^2(3a+1)
3. (здесь степени съезжают, там будет 3^13 и так далее)
4. (x-6)^2-2x(-3x-6)=x^2-12x+36+6x^2+12x=7x^2+36
5. 5x+2(3-4x)=2x+21
5x+6-8x=2x+21
-3x+6=2x+21
-3x-2x=21-6
-5x=15
x=-3
6. a^2-ab-4a+4b=a(a-b)-4(a-b)=(a-b)(a-4)
7. Основание = x
Треугольник равнобедренный по условию, тогда боковая сторона = x-8
Периметр - сумма длин всех сторон, тогда x+2(x-8)=44
x+2x-16=44
3x=44+16
3x=60
x=20
Основание = 20 см
боковые стороны = 20-8=12 см
Объяснение:
2t^2+t-1=0
t1=(-1-3)/4=-1
t2=(-1+3)/4=1/2
Вернёмся к замене
sinx=-1
x=-Π/2+2Πn, n€Z
sinx=1/2
x1=Π/6+2Πm, m€Z
x2=5Π/6+2Πm, m€Z
ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z
2) 6cos^2x+cosx-1=0
Пусть t=cosx, где t€[-1;1], тогда
6t^2+t-1=0
t1=(-1-5)/12=-1/2
t2=(-1+5)/12=1/3
Вернёмся к замене:
cosx=-1/2
x=+-arccos(-1/2)+2Πn, n€Z
cosx=1/3
x=+-arccos(1/3)+2Πm, m€Z
ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z
3) 2cos^2x+sinx+1=0
2(1-sin^2x)+sinx+1=0
-2sin^2x+sinx+3=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+t+3=0
t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1]
t2=(-1+5)/-4=-1
Вернёмся к замене
sinx=-1
x=Π/2+2Πn, n€Z
ответ: Π/2+2Πn, n€Z