2) Правую часть уравнения перенесем влево
7х+13-2х(в квадрате)-3х+3 =0
-2х^2+4x+16=0. Обе части уравнения разделим на -2
x^2-2x-8=0
D=4+32=36
x1=(2+6)/2=4, x2=(2-6)/2=-2.
Больший корень уравнения х=4
ответ:4
3) х-ширина, тогда 7х - длина
х*7х=28, 7х^2=28, x^2=28/7, x^2=4, отсюда х=2
2-ширина. 2*7=14- длина
ответ: 2; 14
4) По теореме Виета сумма корней приведенного (a=1)квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену, т.е 8
х1*х2=8
ответ: 8
5) Квадратное уравнение имеет один корень, если дискриминант Д=0
Д=(2к)^2 - 4 = 0
4к^2 = 4
k^2=4/4
k^2=1
k=-1; k=1
ответ: -1; 1 Значит выбираешь 1), хотя я с этим ответом не совсем согласна
6)2х(в квадрате)-2х-15=х-6
2х(в квадрате)-2х-15-х+6 =0
2х(в квадрате)-3х-9=0
Д=9+72=81
х1=(3-9)/4= -3/2=-1,5
х2= (3+9)/4=3.
Отрицательный корень х=-1,5
-1,5
7) 1) 34+110=144(кв.см) - площадь самого квадрата
2) а = корень из 144=12(см) - сторона квадрата
ответ: 12см
2) Правую часть уравнения перенесем влево
7х+13-2х(в квадрате)-3х+3 =0
-2х^2+4x+16=0. Обе части уравнения разделим на -2
x^2-2x-8=0
D=4+32=36
x1=(2+6)/2=4, x2=(2-6)/2=-2.
Больший корень уравнения х=4
ответ:4
3) х-ширина, тогда 7х - длина
х*7х=28, 7х^2=28, x^2=28/7, x^2=4, отсюда х=2
2-ширина. 2*7=14- длина
ответ: 2; 14
4) По теореме Виета сумма корней приведенного (a=1)квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену, т.е 8
х1*х2=8
ответ: 8
5) Квадратное уравнение имеет один корень, если дискриминант Д=0
Д=(2к)^2 - 4 = 0
4к^2 = 4
k^2=4/4
k^2=1
k=-1; k=1
ответ: -1; 1 Значит выбираешь 1), хотя я с этим ответом не совсем согласна
6)2х(в квадрате)-2х-15=х-6
2х(в квадрате)-2х-15-х+6 =0
2х(в квадрате)-3х-9=0
Д=9+72=81
х1=(3-9)/4= -3/2=-1,5
х2= (3+9)/4=3.
Отрицательный корень х=-1,5
-1,5
7) 1) 34+110=144(кв.см) - площадь самого квадрата
2) а = корень из 144=12(см) - сторона квадрата
ответ: 12см
Объяснение:
1) В коробке 2 красных шарика и 3 белых.
Если вынуть 1 красный, то останется 1 красный и 3 белых.
Красных 1/4.
Если вынуть 2 белых, то останется 2 красных и 1 белый.
Белых 1/3.
Всего 2 + 3 = 5 шариков.
ответ Б. 5.
2) У любого куба 8 угловых кубиков с 3 покрашенными гранями,
12*(p-2) кубиков на ребрах с 2 покрашенными гранями,
6(p-2)^2 кубиков на гранях с 1 покрашенной гранью и
(p-2)^3 внутренних граней, которые вообще не покрашены.
Например, у куба 3*3*3 будет 8 кубиков с 3 гранями,
12*1=12 кубиков с 2 гранями, 6*1^2 = 6 кубиков с 1 гранью и 1^3 = 1 кубик внутри.
Всего 8 + 6 = 14 нечетных кубиков и 12 + 1 = 13 четных кубиков.
А должно быть количество четных и нечетных кубиков одинаково.
8 + 6(p-2)^2 = 12(p-2) + (p-2)^3
Делаем замену p-2 = t и получаем кубическое уравнение:
t^3 - 6t^2 + 12t - 8 = 0
Так как t - число натуральное, то оно должно быть делителем 8.
t = 1 не подходит. Попробуем t = 2.
t^3 - 2t^2 - 4t^2 + 8t + 4t - 8 = 0
t^2*(t - 2) - 4t*(t - 2) + 4(t - 2) = 0
(t - 2)(t^2 - 4t + 4) = 0
(t - 2)^3 = 0
t = p - 2 = 2 - подошло.
p = 4
Только у куба 4*4*4 количество кубиков с нечетным числом окрашенных граней равно количеству кубиков с четным числом.
ответ: А. 4.
3. Периметр клумбы P1 = 2(a + b) = 14 м, значит, a + b = 7, b = 7 - a.
Площадь клумбы S1 = ab = a(7 - a) = 7a - a^2 кв.м.
Если длину каждой стороны увеличить на 1 м, то получится:
S2 = (a+1)(8-a) = 8a + 8 - a^2 - a = 7a - a^2 + 8 = S1 + 8 кв.м.
ответ: Площадь увеличится на 8 кв.м.