1) 0 и 1
2)- 1,5
3)-6, одна целая пять двенадцатых
4)-2 и одна целая одна шестая
5)-четыре целых одна треть
6) - 9 и - 2
Объяснение:
х2 – х в квадрате?
1)у = х2 - x
х2 - x=0
х(х-1)=0
х=0 х-1=0
х=1
2)у = х2 + 3
х2 + 3=0
х2=-3
х=-3/2= - 1,5
3)y = 12х2 - 17х +6
12х2 - 17х +6=0
х(12х-17)=-6
х=-6 12х-17=0
12х=17
х=17/12= одна целая пять двенадцатых
4)у = -6х2 + 7x - 2
-6х2 + 7x - 2=0
-х(6х-7)=2
-х=2 6х-7=0
х=-2 6х=7
х=7/6=одна целая одна шестая
5)y = 3x? - 5х + 8 (как я полагаю, тут вместо знака вопроса двойка?!)
3x2- 5х + 8=0
х(3х-5)=-8
х=-8 3х-5=8
3х=13
х=13/3=четыре целых одна треть
6)y = 2х2 - 7х + 9
2х2 - 7х + 9=0
х(2х-7)=-9
х=-9 2х-7=-9
2х=-9+7
2х=-2
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
f(-x) = (-1/3)x³ + x² = (1/3)x³ + x²
- Нет
-f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x²
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0)
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х = -0.5 0 0.5 1.5 2 2.5
y'=-x^2+2x -1.25 0 0.75 0.75 0 -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4 = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)