Ну, я буду писать высказывание словами, а потом математически, думаю, это будет тебе полезно и понять. Итак, дано: квадрат любого числа есть число положительное. Запишем это математически (скобки для наглядности):
Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов. Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно. А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным. Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например,
ответ:
объяснение:
интуиция мне подсказывает, что требуетс это:
1/(6а-4b) - 1/(6a+4b) + 3a/(9a^2 - 4b^2)
т. к.
6a-4b = 2*(3a-2b)
6a+4b = 2*(3a+2b)
9a^2 - 4b^2 = (3a-2b)(3a+2b) - разность квадратов
то общим знаменателем дроби будет 2(3a-2b)(3a+2b)
в числителе дроби будет:
2(3a+2b) + 2(3a-2b) + 2*3a = 6a + 4b + 6a - 4b + 6a = 18a
дробь окончательно:
18a/2(3a-2b)(3a+2b) = 9a/(9a^2 - 4b^2)
ответ:
9а
9a^2 - 4b^2