М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мамаТВ
мамаТВ
03.12.2022 13:52 •  Алгебра

1. Функцію задано формулою f(x) = ? + 3x. Знайдіть: 1) f(2) i f(-1); 2) нулі функції.

👇
Открыть все ответы
Ответ:
Kira2347
Kira2347
03.12.2022
F(x) = cos(x) - (√3)*sin(x) = 2*( (1/2)*cos(x) - (√3/2)*sin(x) ) = 
= 2*( cos(x)*cos(π/3) - sin(x)*sin(π/3) ) = 2*cos( x+(π/3) ).
Всё, что в условии вытекают из соответствующих свойств функции cos.

Монотонность,
функция f(x) возрастает при
π+ 2πm≤x+(π/3)≤ 2π+2πm, где m∈Z,
(2π/3) + 2πm≤ x ≤ (5п/3) + 2πm.

функция f(x) убывает при
2πn≤x+(π/3) ≤ π + 2πn, где n ∈ Z.
-(π/3) + 2πn≤x≤ (2π/3) + 2πn.

Экстремумы.
Минимум функции f(x) равен (-2), в точках x:
x+(π/3) = π + 2πk₁,
x = (2π/3) + 2πk₁, где k₁∈Z.

Максимум функции f(x) равен 2, в точках x:
x+(π/3) = 2πk₂,
x = -(π/3) + 2πk₂, где k₂∈Z.
4,4(48 оценок)
Ответ:
Tytiki
Tytiki
03.12.2022
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3

наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)

далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4

далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
n=\frac{a_n-a_1}{d}+1
n=\frac{99-11}{4}+1=23
и находим сумму по формуле
S_n=\frac{a_1+a_{23}}{2}*n
S_{23}=\frac{11+99}{2}*23=1265
ответ: 1265
4,6(11 оценок)
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ