к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
Переносим в левую часть уравнения дробь одна вторая и находим общий знаменатель. К первой дроби дополнительный множитель 2, а ко второй х+6. получаем квадратное уравнение в числителе 2х в квадрате-х-6=0. Решаем его через дискриминант, получаем корни х первое 2, х второе минус три вторых. Знаменатель решаем отдельно 2(х+6) не должно равняться нулю (перечеркнутый знак равенства). далее раскрываем скобки и будет 2х+12 не равняется нулю, далее х не должен равняться -6. Это решается для того, чтобы при нахождении корней в числителе, если выйдет такой корень, не записывать его в ответе.
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.