Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
x^2-2x=x+2-x^2
3x^2-8x+13=(x-5)^2
(x+1)^2=(x-2)^2
(х-10)^2=(1-x)^2
х+х/3=8
х+1-5(х-5)(5-х)+5
х/2+х/4=-3/2
(х/2)+(х/4)+х=-49/4
6-(х/3)=х/7
(13+х)/4=х+1
(2х-1)/3-3=4х
х-(х/3)=1/2
Объяснение: