Пусть х - количество дней, за которые 2 слесаря вполнят задание. Тогда: х + 8 - количество дней, которые потребуются 1-му рабочему, чтобы выполнить задание. х + 18 - количество дней, которые потребуются 2-му рабочему на выполнение всего задания. Пусть также 1 - всё задание. Тогда: 1/х - часть задания, которое выполняют 2 рабочих в день. 1/(х+8) - часть задания, которое выполняет 1-й рабочий в день. 1/(х+18) - часть задания, которое выполняет 2-й рабочий в день. Теперь модно составить уравнение: 1/х = 1/(х + 8) + 1/(х + 18) 1/х = (x + 18 + x + 8)/[(x + 8)*(x + 18)] 1/x = (2x + 26)/(x^2 + 26x + 144) x^2 + 26x + 144 = x * (2x + 26) x^2 + 20x + 144 = 2x^2 + 20x x^2 = 144 x = 12
Задание. Какие из чисел √18,√26,√30 заключены между числами 5 и 6. Решение: Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим Возведем все части неравенства в квадрат, будем иметь Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е. . Возведя все части неравенства в квадрат, получим . Неравенства выполняются, следовательно, число √26 заключен между числа 5 и 6.
Проверим теперь для √30, то есть, . Возведя все части неравенства в квадрат, получим: . Видим, что неравенства правильны, следовательно, число √30 заключен между числа 5 и 6.
т.к. у 8 и 15 одинаковые степени n, можем их сложить - 15+8=23, 23-2= 21
21 нацело делится на 7 (=3), поэтому и будет кратным