в заданной прогрессии 6 членов
Объяснение:
1. Для заданной геометрической прогрессии B(n) известно следующее:
B1 + Bn = 66;
B1 = 66 - Bn;
2. B2 * B(n - 1) = 128;
(B1 * q) * (B1 * q^(n - 2) = B1 * (B1 * q* q^(n - 2)) =
B1 * (B1 * q^(n - 1)) = B1 * Bn = 128;
(66 - Bn) * Bn = 128;
Bn² - 66 * Bn + 128 = 0;
Bn1,2 = 33 +- sqrt(33² - 128) = 33 +- 31;
Bn = 33 + 31 = 64 (прогрессия возрастающая);
B1 = 66 - Bn = 66 - 64 = 2;
3. Вычислим n:
B1 * Bn = B1² * q^(n - 1) = 128;
q^(n - 1) = 128 / B1² = 128 / 2² = 32 = 2^5;
n - 1 = 5;
n = 5 + 1 = 6.
a)y(наиб)=2
y(наим)=-2
b)y(наим)=-29
y(наиб)=31
Объяснение:
a)
1)Находим производную функции :
f'(x)=3x^2-3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2-3=0 --> x=1
x=-1
3) Промежутку принадлежит только точка x=1 , поэтому значения функции на концах и в точке 1:
f(0)=0
f(1)=-2-наим
f(2)=8-6=2-наиб
б)
1)Находим производную функции :
f'(x)=3x^2+3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2+3=0 --> решений нет , значит наибольшее значение достигает правом конце отрезка [-3;3] , а наименьшее - в левом:
3) f(-3)=-27-3+1=-29
f(3)=27+3+1=31
нет, нельзя утверждать, так, как выражение 1-х7 не равно 1-х2. так и с остальными примерами