x+y=4 x^2 - y^2 = 8
y = 4 - x Подставляем x^2 - (4-x)^2 = 8
y = 4- x Подносим к степени. Присутствует форма сокращенного умножения. x^2 - (16 - 8х + x^2) = 8
y = 4 - x x^2 - 16 + 8x - x^2 = 8
y = 4-x x^2 Сокращается 8x = 8 + 16
y = 4 - x 8x = 24
y = 4 - x x = 3
Так как из второго уравнения системы мы уже знаем, чему равен ноль - также подставляем.
y = 4 - 3 x = 3
y = 1 x=3
наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)
далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4
далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
и находим сумму по формуле
ответ: 1265