Пусть скорость течения равна х. Тогда скорость по течению равна (5+х) км/ч, скорость против течения равна( 5 - х) км/ч. 14 часов лодка отсутствовала, из них 1, 5 часа отдыхала. Время, которое лодка потратилa чисто на дорогу, равно 12, 5 часам. Составим уравнение: 30/(5-х) +30/(5+х) = 12,5; 30(5+х) + 30(5 -х) = 12,5*(5-х)(5+х); 150 +30х ++150 -30x= 12,5(25 - x^2);; 300=12,5*25 - 12,5 x^2; 12,5 x^2=12,5; x^2=1; x=1.
проверка: По течению лодка плыла 30 км со скорость 5+1=6 км/ч и потратила на это 30/6=5 часов, против течения лодка плыла со скорость 5-1=4 км/ч и потратила всего 30/4=7,5 часов. В сумме получается 5 + 7,5 =12, 5 часов. ОТвет ; скорость течения равна 1 км/ч
Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
Составим уравнение:
30/(5-х) +30/(5+х) = 12,5;
30(5+х) + 30(5 -х) = 12,5*(5-х)(5+х);
150 +30х ++150 -30x= 12,5(25 - x^2);;
300=12,5*25 - 12,5 x^2;
12,5 x^2=12,5;
x^2=1;
x=1.
проверка: По течению лодка плыла 30 км со скорость 5+1=6 км/ч и потратила на это 30/6=5 часов, против течения лодка плыла со скорость 5-1=4 км/ч и потратила всего 30/4=7,5 часов. В сумме получается 5 + 7,5 =12, 5 часов. ОТвет ; скорость течения равна 1 км/ч