М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Keyanplay1
Keyanplay1
06.05.2021 11:47 •  Алгебра

Використовуючи формули скороченого множення, спростіть вираз: а) 10а+(а-5)² 2)b(b-3)-(b-4)²

👇
Ответ:
1828384858
1828384858
06.05.2021

10a+(a-5)²=a²+25

b(b-3)-(b-4)²=5b-16

4,5(97 оценок)
Ответ:
привет8917
привет8917
06.05.2021

Объяснение:

а) 10а+(а-5)² = 10а+а²-10a+25=а²+25

2) b(b-3)-(b-4)²=b²-3b-(b²-8b+16)=b²-3b-b²+8b-16=5b-16

4,7(25 оценок)
Открыть все ответы
Ответ:
эля0521
эля0521
06.05.2021
Решить уравнения
1)  3x² = 0   ⇒ х = 0
2) 9x² = 81  ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0     ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4    ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20

2. Решить уравнения
1) x² + 5x = 0
    х(х + 5) = 0
х₁ = 0   или  х₂ = -5  

2) 4x² = 0.16x
    4x² - 0.16x = 0 
4х (х - 0,04) = 0
х₁ = 0   или  х₂ = 0,04 

 3) 9x² + 1 = 0
     9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
 
3. Решить уравнения
 1) 4x² - 169 = 0  
 4x² = 169
х² = \frac{169}{4}
х₁ =  -6,5  или  х₂ = 6,5 

2) 25 - 16x² = 0
 16х² = 25
х₁ =  -1,25  или  х₂ = 1,25 
 
 3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ =  -2√2  или  х₂ = 2√2
 
 4) 3x² = 15
      х² = 5
х₁ =  -√5  или  х₂ = √5
  
5) 2x² =  
   х² = \frac{1}{16}
х₁ =  -0,25  или  х₂ = 0,25
  
6) 3x² =   
  3х² = \frac{16}{3}
х² = \frac{16}{9}
х₁ =  -1\frac{1}{3}  или  х₂ = 1\frac{1}{3} 
4,7(34 оценок)
Ответ:
Аминаgjdhkutdf
Аминаgjdhkutdf
06.05.2021

Как ни странно, ответ здесь действительно 2/3

Объяснение:

Я надеюсь, z здесь никак не связано с комплексными числами. Решаем все это добро на множестве действительных чисел (мне несколько удобнее записывать через x, поэтому буду через х записывать. Думаю, переписать решение, заменив везде x на z, не проблема.)

\int\limits^\frac{\pi }{2} _0 {\sqrt{cosx(1-cos^2x)} } \, dx =\int\limits^\frac{\pi }{2} _0 {\sqrt{cosx*sin^2x} } \, dx = \int\limits^\frac{\pi }{2} _0 |sinx|{\sqrt{cosx} } \, dx

Теперь учтем, что пределы интегрирования предполагают, что в этом промежутке синус неотрицателен, а значит, его можно раскрыть со знаком "+".

\int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \, dx

Встает вопрос, что делать с этим интегралом. Попробуем интегрировать по частям. Для этого корень будем дифференцировать, а синус интегрировать. \int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \, dx = -cosx\sqrt{cosx} - \int\limits^\frac{\pi }{2} _0 {\frac{sinxcosx}{2\sqrt{cosx} } } \, dx=-cosx\sqrt{cosx}-\frac{1}{2} \int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \, dx

Если не очень понятно про интегрирование по частям, почитай про него. Здесь важно, что: (\sqrt{cosx})' = \frac{1}{2\sqrt{cosx} }*(-sinx), и что \int\limits^a_b {sinx} \, dx = -cosx (без подстановок и прочего) а потом лишь перемножения и вычитание.

Вернемся к интегралу. Занятно получилось, что в выражении спрятано некоторое уравнение относительно как раз нашего интеграла:

\int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \ dx = -cosx\sqrt{cosx} -\frac{1}{2} \int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \ dx

Это вообще прекрасно, потому что мы уже фактически нашли наш интеграл:

\frac{3}{2} \int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \ dx = -cosx\sqrt{cosx}; \int\limits^\frac{\pi }{2} _0 sinx{\sqrt{cosx} } \ dx = -\frac{2}{3}cosx\sqrt{cosx}

Естественно, подразумевается, что значение справа вычисляется по двойной подстановке с теми пределами, которые у нас есть.

-\frac{2}{3}(cos\frac{\pi }{2}\sqrt{cos\frac{\pi }{2} }-cos0\sqrt{cos0})=-\frac{2}{3}(0-1)=\frac{2}{3}

Вот и получили наш ответ.

4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ