это не пример, а система уравнений)
х-4у=10
(х-1)²=7(х+у)+1
упростим второе уравнение.
в левой части дана формула сокращенного умножения, разложим ее. чтобы раскрыть скобки из правой части, нужно член, стоящий перед скобкой, умножить на каждый член в скобках. получим:
х-4у=10
х²-2х+1=7х+7у+1
во втором уравнении перенесем все в левую часть, поменяв знак, если переносим выражение через равно. приведем подобные и получим:
х-4у=10
х²-9х-7у=0
решим систему методом подстановки.
выразим х в первом уравнении:
х=10+4у
х²-9х-7у=0
теперь вместо х подставляешь выражение 10+4у во второе уравнение.
х=10+4у
(10+4у)²-9(10+4у)-7у=0
поработаем со 2 уравнением. раскроем скобки:
100+80у²+16у-90-36у-7у=0
80у²-27у+10=0
D= 729-3 200
дискриминант выходит отрицательный, значит корней нет
я так думаю...
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
+ + знаки квадратичной функции
∅