а)2sin²x-3sinx-2=0
Замена sinx=t
2t²-3t-2=0
D=3²+4×2×2=25
t₁= 3+√D÷4=3+5÷ 4=8÷4=2
t₂=3-√D÷4=3-5÷4=-2÷4=-0,5
Возвращаемся к замене
sinx=2 sinx=-0,5
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
4cos²x+4sinx-1=0
cos²x=1-sin²x
4( 1-sin²x)+4sinx-1=0
4-4sin²x+4sinx-1=0
-4sin²x+4sinx-1+4=0
-4 sin²x+4sinx+3=0 ÷(-1)
4sin²x-4sinx-3=0
Замена sinx=t
4t²-4t-3=0
D=4²+4×4×3=16+48=64
t₁=4+√D÷8= 4+8÷8=12÷8=1,5
t₂=4-√D÷8=4-8÷8= -4÷8=-0,5
Возвращаемся к замене
sinx=1,5 sinx=-1\2
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
Рівняння швидкості човна
Човен пройшов за течією річки 10 км і 24 км проти течії за (8+24)/8 год. Знайдіть власну швидкість човна, якщо швидкість течії дорівнює
Давайте позначимо швидкість човна як Vc і швидкість течії як Vт.
Коли човен рухається за течією, його швидкість відносно нерухомої точки на березі річки буде сумою швидкості човна та швидкості течії. Тобто, Vr = Vc + Vт.
Коли човен рухається проти течії, його швидкість відносно нерухомої точки на березі річки буде різницею швидкості човна та швидкості течії. Тобто, Vp = Vc - Vт.
За умовою задачі, човен пройшов 10 км за течією і 24 км проти течії за (8+24)/8 год. Це означає, що час, який знадобився для руху за течією, становить 8 год, а час, який знадобився для руху проти течії, становить 24 год.
Ми можемо записати ці умови у вигляді рівнянь: 10 = (Vc + Vт) * 8 (1) 24 = (Vc - Vт) * 24 (2)
Розкриємо дужки в обох рівняннях: 10 = 8Vc + 8Vт (3) 24 = 24Vc - 24Vт (4)
Поділимо обидві рівності на 8 та 24 відповідно: 10/8 = Vc + Vт (5) 24/24 = Vc - Vт (6)
Спростимо: 5/4 = Vc + Vт (7) 1 = Vc - Vт (8)
Зараз у нас є система рівнянь (7) та (8). Можна розв'язати її методом додавання:
(7) + (8): 5/4 + 1 = Vc + Vт + Vc - Vт
Спростимо: 9/4 = 2Vc
Поділимо обидві частини на 2: 9/8 = Vc
Отже, швидкість човна (Vc) дорівнює 9/8 км/год.
Таким чином, власна швидкість човна становить 9/8 км/год,