Есть формула
Но напрямую я её использовать не очень люблю.
Проще использовать такой подход (он, конечно, на формуле основан)
1. "Разрезать" функцию на 2 части: одну, которую будем дифференцировать, а другую - интегрировать. Понятно, что это разбиение часто основывается на том, какую функцию проще интегрировать, так как продифференцировать можно любую (но иногда, как во 2-м примере, будем смотреть, какую функцию лучше дифференцировать).
2. В столбик написать обе получившиеся функции (ту, которую интегрируем, с дифференциалом запишем, естественно). Отчертить большой чертой и справа напротив каждой функции написать результат того, что мы с ней делаем (в одном случае результат интегрирования, а в другом дифференцирования).
3. А дальше итоговый интеграл будет равен "функция на функцию" (это будет крест накрест, где нет дифференциалов) минус интеграл от произведения функций справа.
Попробую на примере показать:
а) есть интеграл
Здесь удобнее интегрировать логарифм, а дифференцировать
Ну вот как-то так. И теперь сам интеграл:
Надеюсь, что стало понятнее.
б) здесь придется интеграл по частям брать аж 2 раза, но ничего страшного, возьмем.
Сам интеграл
Здесь понятно, что тригонометрия будет давать тригонометрию что при интегрировании, что при дифференцировании, а вот многочлен уже при втором дифференцировании даст константу, так что его и будем дифференцировать.
Надо лишь решить ещё один интеграл, причем абсолютно так же.
Ну и соберем все теперь:
В обоих случаях нужно делать замену переменной.
Что тут можно предпринять? Известно, , вот и сделаем замену
Вообще идеально, получим простейший интеграл. Так как это определенный интеграл, то обратную замену можно не делать, а просто пересчитать пределы по самой замененной функции
То есть пределы станут:
А теперь сам интеграл
Теперь следующий интеграл:
Что можно такого заменить? Попробуем взять корень, его производная даст тот же корень в знаменателе, да и сам вполне нормально выражается, делаем:
Заодно сразу новые пределы посчитаем:
То есть
Теперь подставляем и смотрим, что получается:
Можно, конечно, было и получить неопределенный интеграл и в него подставить старые пределы, но пересчет на новые позволяет не совершать часть действий
ответ:Для знаходження суми перших шести членів геометричної прогресії, потрібно використати формулу суми геометричної прогресії:
S = a * (1 - r^n) / (1 - r),
де S - сума перших n членів прогресії, a - перший член прогресії, r - знаменник прогресії, n - кількість членів, для яких обчислюється сума.
У даному випадку:
a = -0.2 (перший член прогресії),
r = 0.8 (знаменник прогресії),
n = 6 (кількість членів, для яких обчислюється сума).
Підставимо ці значення в формулу:
S = -0.2 * (1 - 0.8^6) / (1 - 0.8).
Тепер можемо обчислити суму:
S = -0.2 * (1 - 0.262144) / (1 - 0.8).
S = -0.2 * (0.737856) / (0.2).
S = -0.1475712 / 0.2.
S ≈ -0.737856.
Отже, сума перших шести членів геометричної прогресії приблизно дорівнює -0.737856.
Объяснение: