Имеем бесконечно убывающую геометрическую прогрессию, |q| < 1
b2 = b1*q
b1 = b2/q
Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
=)
кор. 4 ст (x+8) – кор. 4 (x-8) = 2
u^4=x+8 (1)
v^4=x-8 (2)
Тогда
u-v=2
C другой стороны вычтем из (1) (2), получим
u^4 –v^4 = 16
Получаем систему
u-v=2
u^4 –v^4 = 16
Из 1-го уравнения определим u
u = v+2
Подставим во второе уравнение
(v+2)^4-v^4=16
(-v^4-16) + (v^4+8v^3+24v^2+32v+16)=0
8v^3+24v^2+32v=0
v(8v^2+24v+32)=0
Имеем,
v=0
и
8v^2+24v+32=0
v^2+3v+4=0
D=3^2-4-4*1*4=-7 < 0 – нет решений
То есть имеем одно решение v=0, тогда u = v+2=2
u^4=x+8 или x+8=2^4=16, откуда x=8
Объяснение: